1
|
Li M, Pengsihua H, Zhao S, Wang Z, Yang L, Liu T. An evolutionary game theory analysis on the environmental impact of discharging Fukushima's nuclear wastewater: International stakeholders and strategic dynamics. PLoS One 2025; 20:e0317419. [PMID: 39869546 PMCID: PMC11771948 DOI: 10.1371/journal.pone.0317419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 12/27/2024] [Indexed: 01/29/2025] Open
Abstract
On August 24, 2023, Japan controversially decided to discharge nuclear wastewater from the Fukushima Daiichi Nuclear Power Plant into the ocean, initiating intense domestic and global debates. This study employs a mixed-method approach, integrating quantitative evolutionary game theory and qualitative data analysis to explore the strategic dynamics among Japan, other nations, and the Japan Fisheries Association regarding this decision. The data includes international environmental reports and economic statistics, served as the basis for simulating decision-making processes under various legal, economic, and environmental pressures. The evolutionary game theory model is used to predict and analyze three evolutionarily stable strategies (ESS), detailing the transition from the initiation to cessation of wastewater discharge. These strategies highlight the necessity for international cooperation, rigorous scientific research, public education, and effective wastewater treatment methods. This study aims to provide both a theoretical framework and practical guidance to foster a global consensus on nuclear wastewater management, which is vital for marine conservation and sustainable development.
Collapse
Affiliation(s)
- Mingyang Li
- China University of Petroleum-Beijing at Karamay, Karamay, Xinjiang, China
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han Pengsihua
- China University of Petroleum-Beijing at Karamay, Karamay, Xinjiang, China
| | - Songqing Zhao
- China University of Petroleum-Beijing at Karamay, Karamay, Xinjiang, China
| | - Zejun Wang
- China University of Petroleum-Beijing at Karamay, Karamay, Xinjiang, China
| | - Limin Yang
- China University of Petroleum-Beijing at Karamay, Karamay, Xinjiang, China
| | - Tongjing Liu
- China University of Petroleum-Beijing at Karamay, Karamay, Xinjiang, China
| |
Collapse
|
2
|
Liu L, Sakai K, Tanaka T, Kusumoto KI. Morphological responses of two Aspergillus oryzae strains to various metal ions at different concentrations. MYCOSCIENCE 2024; 65:216-223. [PMID: 39720020 PMCID: PMC11664057 DOI: 10.47371/mycosci.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 12/26/2024]
Abstract
Aspergillus species take up various metal ions from environment. The morphology of Aspergillus oryzae strains can vary under the influence of various metal ions. Here, the effects of Ti4+, V3+, Sr2+, Ba2+, Al3+, Fe2+, Zn2+, Mn2+, Ca2+, and Cu2+ on morphological parameters of A. oryzae strains RIB40 and RIB143 were estimated. Colony diameter, conidiation, vesicle head size, and stipe width in both strains varied with concentration. Ti4+, Sr2+, Ba2+, Al3+, Fe2+, and Ca2+ affected conidiation in similar tendency between two strains. The effects of Ti4+, V3+, Sr2+, and Ba2+ on the morphology of A. oryzae are reported here for the first time. Induction of growth of both strains by 0.0001% Ti4+ may help the fermentation industry. Induction of conidiation in RIB40 by 0.001% Cu2+ confirmed previous results that low concentrations of Cu2+ promote the growth of Aspergillus. The most novel finding is that 0.001% Zn2+ increased the vesicle head size in RIB40; possible reasons are discussed.
Collapse
Affiliation(s)
- Liyun Liu
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Kanae Sakai
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Takumi Tanaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Ken-Ichi Kusumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| |
Collapse
|
3
|
Liu L, Sakai K, Tanaka T, Kusumoto KI. Subcomponents in humic acid structure contribute to the differential responses of Aspergillus oryzae strains to humic acid. J GEN APPL MICROBIOL 2024; 69:260-269. [PMID: 37468259 DOI: 10.2323/jgam.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Humic acid (HA) is a complex natural organic macromolecule, can be decomposed to low-molecular compounds by some soil fungi and then influences the growth of fungi. Aspergillus oryzae is a fungus domesticated from its ancestor, which was supposed to live in soil. Group 3 strains of A. oryzae hold fewer aflatoxin-biosynthetic genes than group 1 strains and may differently response to HA because of the deletion of some genes along with the domestication. However, effect of HA on growth of A. oryzae group 1 and group 3 strains remains unclear. In this study, four strains of A. oryzae in group 1 and four in group 3 were point inoculated on equivalent medium (pH 7.3) with two commercially available HAs. The growth of RIB40 was the most stimulated among group 1 strains and that of RIB143 was the most inhibited among group 3 strains. To identify the basis of these differences, we examined the possible effects of HA subcomponents including polyphenol and minerals on the growth of RIB40 and RIB143. Polyphenol represented by gallic acid (GA), a partial structure common with model HA, and mineral ions including Al 3+ , Ca 2+ , Ti 4+ , Mn 2+ , Sr 2+ , and Ba2+ contributed to stimulating the growth of RIB40, whereas these components generally did not affect the growth of RIB143. Thus, our findings indicate that the sub-compositions of HAs, including GA and several minerals, were the main factors driving the different responses of RIB40 and RIB143 to HAs.
Collapse
Affiliation(s)
- Liyun Liu
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Kanae Sakai
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Takumi Tanaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Ken-Ichi Kusumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| |
Collapse
|
4
|
Soleymani F, Khani MH, Pahlevanzadeh H, Amini Y. Intensification of strontium (II) ion biosorption on Sargassum sp via response surface methodology. Sci Rep 2023; 13:5403. [PMID: 37012342 PMCID: PMC10070446 DOI: 10.1038/s41598-023-32532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
A batch system was employed to investigate the biosorption of strontium (II) on Sargassum sp. The biosorption of strontium on Sargassum sp was studied with response surface methodology to determine the combined effect of temperature, initial metal ion concentration, biomass treatment, biosorbent dosage and pH. Under optimal conditions, the algae's biosorption capacity for strontium (initial pH 7.2, initial strontium concentration 300 mg/l for Mg-treated biomass and biosorbent dosage 0.1 g in 100 mL metal solution) was measured at 103.95 mg/g. In our analysis, equilibrium data were fitted to Langmuir and Freundlich isotherms. Results show that the best fit is provided by the Freundlich model. Biosorption dynamics analysis of the experimental data indicated that strontium (II) was absorbed into algal biomass in accordance with the pseudo-second-order kinetics model well.
Collapse
Affiliation(s)
- F Soleymani
- Chemical Engineering Department, Tarbiat Modares University, P.O. Box 14155-143, Tehran, Iran
| | - M H Khani
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran, Iran.
| | - H Pahlevanzadeh
- Chemical Engineering Department, Tarbiat Modares University, P.O. Box 14155-143, Tehran, Iran
| | - Younes Amini
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran, Iran.
| |
Collapse
|
5
|
Harpke M, Pietschmann S, Ueberschaar N, Krüger T, Kniemeyer O, Brakhage AA, Nietzsche S, Kothe E. Salt and Metal Tolerance Involves Formation of Guttation Droplets in Species of the Aspergillus versicolor Complex. Genes (Basel) 2022; 13:genes13091631. [PMID: 36140799 PMCID: PMC9498632 DOI: 10.3390/genes13091631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Three strains of the Aspergillus versicolor complex were isolated from a salty marsh at a former uranium mining site in Thuringia, Germany. The strains from a metal-rich environment were not only highly salt tolerant (up to 20% NaCl), but at the same time could sustain elevated Cs and Sr (both up to 100 mM) concentrations as well as other (heavy) metals present in the environment. During growth experiments when screening for differential cell morphology, the occurrence of guttation droplets was observed, specifically when elevated Sr concentrations of 25 mM were present in the media. To analyze the potential of metal tolerance being promoted by these excretions, proteomics and metabolomics of guttation droplets were performed. Indeed, proteins involved in up-regulated metabolic activities as well as in stress responses were identified. The metabolome verified the presence of amino sugars, glucose homeostasis-regulating substances, abscisic acid and bioactive alkaloids, flavones and quinones.
Collapse
Affiliation(s)
- Marie Harpke
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743 Jena, Germany
| | - Sebastian Pietschmann
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743 Jena, Germany
| | - Nico Ueberschaar
- Mass Spectrometry Platform, Friedrich Schiller University Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Thomas Krüger
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Molecular and Applied Microbiology, Adolf-Reichwein-St. 23, 07745 Jena, Germany
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Molecular and Applied Microbiology, Adolf-Reichwein-St. 23, 07745 Jena, Germany
| | - Axel A. Brakhage
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Molecular and Applied Microbiology, Adolf-Reichwein-St. 23, 07745 Jena, Germany
| | - Sandor Nietzsche
- Elektronenmikroskopisches Zentrum, Universitätsklinikum Jena, Ziegelmühlenweg 1, 07743 Jena, Germany
| | - Erika Kothe
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743 Jena, Germany
- Correspondence:
| |
Collapse
|
6
|
John R, Rajan AP. Effective sequestration of chromium by bacterial biosorption: a review. Prep Biochem Biotechnol 2020; 51:738-748. [DOI: 10.1080/10826068.2020.1861010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Rinaldo John
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Anand Prem Rajan
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
- CO2 and Green Technology Centre, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
7
|
Dai Q, Zhang T, Zhao Y, Li Q, Dong F, Jiang C. Potentiality of living Bacillus pumilus SWU7-1 in biosorption of strontium radionuclide. CHEMOSPHERE 2020; 260:127559. [PMID: 32673872 DOI: 10.1016/j.chemosphere.2020.127559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Bacillus pumilus SWU7-1 was isolated from strontium ion (Sr(II))-uncontaminated soil, its biosorption potential was evaluated, and the effect of γ-ray radiation treatment on its biosorption was discussed. Domesticated under Sr(II) stress promoted the biosorption ability of B. pumilus to Sr(II), and the biosorption efficiency increased from 46.09% to 94.69%. At a lower initial concentration, the living bacteria had the ability to resist the biosorption of Sr(II). The optimal initial concentration range was 54-130 mg/L. The biosorption profile was better matched by Langmuir than Freundlich model, showing that the biosorption process of Sr(II) by the experimental strain was closer to the surface adsorption. According to Langmuir model, the maximum biosorption capacity of B. pumilus on Sr (II) was 299.4 mg/g. During the bacterial growth in the biosorption process, the changes in biosorption capacity and efficiency can be divided into two phases, and a pseudo-second-order model is followed in each phase. There was no significant difference in the biosorption efficiency of bacteria with different culture time after γ-ray radiation, and all of them were above 90%, which showed that B. pumilus had significant radiation resistance under experimental conditions. This study emphasized the potential application of B. pumilus in the treatment of radioactive Sr(II) pollution by biosorption.
Collapse
Affiliation(s)
- Qunwei Dai
- Fundamental Science on Nuclear Waste and Environmental Safety Laboratory (SWUST), Mianyang City, Sichuan, 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST, Ministry of Education), Mianyang City, Sichuan, 621010, China.
| | - Ting Zhang
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST, Ministry of Education), Mianyang City, Sichuan, 621010, China
| | - Yulian Zhao
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST, Ministry of Education), Mianyang City, Sichuan, 621010, China
| | - Qiongfang Li
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST, Ministry of Education), Mianyang City, Sichuan, 621010, China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST, Ministry of Education), Mianyang City, Sichuan, 621010, China
| | - Chunqi Jiang
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA
| |
Collapse
|
8
|
Koutrotsios G, Danezis G, Georgiou C, Zervakis GI. Elemental Content in Pleurotus ostreatus and Cyclocybe cylindracea Mushrooms: Correlations with Concentrations in Cultivation Substrates and Effects on the Production Process. Molecules 2020; 25:molecules25092179. [PMID: 32392710 PMCID: PMC7249068 DOI: 10.3390/molecules25092179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 01/26/2023] Open
Abstract
Few data exist about the effect of substrates’ elemental content on the respective concentrations in cultivated mushrooms, on the degradation of lignocellulosics or on production parameters. Sixteen elements (14 metals and 2 metalloids) were measured by inductively coupled plasma mass spectrometry (ICP-MS) in Pleurotus ostreatus and Cyclocybe cylindracea mushrooms, and in their seven cultivation substrates composed of various plant-based residues. Results revealed a high variability in elemental concentration among substrates which generally led to significant differences in the respective mushroom contents. High bioconcentration factors (BCFs) were noted for Cd, Cu, Mg and Zn for both species in all substrates. BCF of each element was variously affected by substrates’ pH, crude composition, and p and K content. Significant positive correlations were demonstrated for Cu, Fe, Mn and Li concentrations vs. a decrease of cellulose and hemicellulose in P. ostreatus substrates, and vs. mushrooms’ biological efficiency. In the case of C. cylindracea, Be, Mg and Mn concentrations were positively correlated with the decrease of hemicellulose in substrates, while a significant positive correlation was also recorded vs. mushroom productivity. Finally, it was found that 15% to 35% of the daily dietary needs in Mg, Se and Zn could be covered by mushroom consumption.
Collapse
Affiliation(s)
- Georgios Koutrotsios
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Georgios Danezis
- Laboratory of Chemistry, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Constantinos Georgiou
- Laboratory of Chemistry, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
- Correspondence: (C.G.); (G.I.Z.)
| | - Georgios I. Zervakis
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
- Correspondence: (C.G.); (G.I.Z.)
| |
Collapse
|
9
|
Ermakov V, Bech J, Gulyaeva U, Tyutikov S, Safonov V, Danilova V, Roca N. Relationship of the mobile forms of calcium and strontium in soils with their accumulation in meadow plants in the area of Kashin-Beck endemia. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:159-171. [PMID: 31111334 DOI: 10.1007/s10653-019-00323-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
This study was aimed at assessment of strontium and calcium mobility in soils and their accumulation with plants in the areas endemic for Kashin-Beck disease in Eastern Transbaikalia. The strontium and calcium mobility levels were determined using the method of sequential chemical extraction for 7 samples of meadow soils collected from the endemic region and 7 soil samples taken from conditionally control sites. To measure the Ca and Sr levels in the soil and plant samples, XRF analysis and AAS were used. The increased strontium level in the meadow soils of the endemic areas is accompanied by the element's higher mobility. The highest strontium yield was observed in the course of soil extraction using 1 M ammonium acetate, while the soils taken from the control sites gave lower amounts of the trace element. Furthermore, there is a positive correlation between the amount of the strontium extracted and its content in plants (r = + 0.86 - 0.98). At the sequential chemical extraction of calcium from the soils using the above method, the calcium yield was maximal in the ammonium acetate fraction (background sites) and in ammonium acetate and 6 M HCl fractions (endemic areas). The correlation between the amount of the calcium extracted in 1 M ammonium acetate and the macroelement levels found in plants was + 0.968. In addition, a peculiarly high accumulation of strontium in various willow species as compared to other meadow plants was revealed for the first time ever. Thus, the work introduces new data into the trace element biogeochemistry and environmental monitoring.
Collapse
Affiliation(s)
- Vadim Ermakov
- Vernadsky Institute of Geochemistry and Analytical Chemistry, GEOKHI RAS, Kosigin Street, 19, Moscow, Russia, 119991.
| | - Jaume Bech
- Laboratory of Soil Science, Faculty of Biology, Plant Biology, University of Barcelona, Barcelona, Spain
| | - Uliana Gulyaeva
- Vernadsky Institute of Geochemistry and Analytical Chemistry, GEOKHI RAS, Kosigin Street, 19, Moscow, Russia, 119991
| | - Sergey Tyutikov
- Vernadsky Institute of Geochemistry and Analytical Chemistry, GEOKHI RAS, Kosigin Street, 19, Moscow, Russia, 119991
| | - Vladimir Safonov
- Vernadsky Institute of Geochemistry and Analytical Chemistry, GEOKHI RAS, Kosigin Street, 19, Moscow, Russia, 119991
| | - Valentina Danilova
- Vernadsky Institute of Geochemistry and Analytical Chemistry, GEOKHI RAS, Kosigin Street, 19, Moscow, Russia, 119991
| | - Núria Roca
- Laboratory of Soil Science, Faculty of Biology, Plant Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Khan AN, Bagla HK. Application of tracer technique in remediation of Sr(II) from simulated low level radioactive waste. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06514-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Rae IB, Pap S, Svobodova D, Gibb SW. Comparison of sustainable biosorbents and ion-exchange resins to remove Sr 2+ from simulant nuclear wastewater: Batch, dynamic and mechanism studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2411-2422. [PMID: 30292997 DOI: 10.1016/j.scitotenv.2018.09.396] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 05/22/2023]
Abstract
Removal of Sr2+ from aqueous media presents particular challenges, especially in complex wastes such as nuclear industry liquors. Commercial sorbents while effective, can be highly expensive and subject to negative effects from competing ions. Here we evaluate two potential biosorbents (crab carapace and spent distillery grain) as potential alternatives and compare their performance to two commercial sorbents for Sr2+ removal at industrially relevant concentrations (low mg/L). Physical and structural characterization of the materials was undertaken, and batch and dynamic studies were performed on Sr2+ solutions and simulated nuclear wastewater. Sorption performance was quantified with respect to contact time, initial concentration and ion-competition. Removal efficiencies were 20-70% for the biosorbents compared to 55-95% for the commercial materials. Results indicated sorption was predominantly through monolayer coverage on homogenous sites and could be described using a pseudo-second-order kinetic model. Studies with the simulant liquor showed Sr2+ sorption was reduced by 10-40% due to ion-competition for sites. Characterization of biosorbents before and after Sr2+ sorption suggested that outer-sphere complexation and ion-exchange were the primary Sr2+ removal mechanisms. The efficiency of crab carapace for Sr2+ removal from aqueous media (with adsorption capacity 3.92 mg/g.) at industrially relevant concentrations, together with its mechanical stability, implementation and disposal cost, makes it a competitive option compared to other biosorbents and commercial materials reported in the literature.
Collapse
Affiliation(s)
- Ian B Rae
- Environmental Research Institute, North Highland College, University of the Highlands and Islands, Castle Street, Thurso, Caithness, Scotland KW14 7JD, UK
| | - Sabolc Pap
- Environmental Research Institute, North Highland College, University of the Highlands and Islands, Castle Street, Thurso, Caithness, Scotland KW14 7JD, UK.
| | - Dagmar Svobodova
- Environmental Research Institute, North Highland College, University of the Highlands and Islands, Castle Street, Thurso, Caithness, Scotland KW14 7JD, UK
| | - Stuart W Gibb
- Environmental Research Institute, North Highland College, University of the Highlands and Islands, Castle Street, Thurso, Caithness, Scotland KW14 7JD, UK
| |
Collapse
|
12
|
Fernández PM, Viñarta SC, Bernal AR, Cruz EL, Figueroa LIC. Bioremediation strategies for chromium removal: Current research, scale-up approach and future perspectives. CHEMOSPHERE 2018; 208:139-148. [PMID: 29864705 DOI: 10.1016/j.chemosphere.2018.05.166] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/16/2018] [Accepted: 05/27/2018] [Indexed: 05/25/2023]
Abstract
Industrial applications and commercial processes release a lot of chromium into the environment (soil, surface water or atmosphere) and resulting in serious human diseases because of their toxicity. Biological Cr-removal offers an alternative to traditional physic-chemical methods. This is considered as a sustainable technology of lower impact on the environment. Resistant microorganisms (e.g. bacteria, fungi, and algae) have been most extensively studied from this characteristic. Several mechanisms were developed by microorganisms to deal with chromium toxicity. These tools include biotransformation (reduction or oxidation), bioaccumulation and/or biosorption, and are considered as an alternative to remove the heavy metal. The aim of this review is summarizes Cr(VI)-bioremediation technologies oriented on practical applications at larger scale technologies. In the same way, the most relevant results of several investigations focused on process feasibility and the robustness of different systems (reactors and pilot scale) designed for chromium-removal capacity are highlighted.
Collapse
Affiliation(s)
- Pablo M Fernández
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Caseros, T4001MVB San Miguel de Tucumán, Tucumán, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Av. Belgrano 300, 4700 San Fernando del Valle de Catamarca, Catamarca, Argentina.
| | - Silvana C Viñarta
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Caseros, T4001MVB San Miguel de Tucumán, Tucumán, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Av. Belgrano 300, 4700 San Fernando del Valle de Catamarca, Catamarca, Argentina.
| | - Anahí R Bernal
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Caseros, T4001MVB San Miguel de Tucumán, Tucumán, Argentina.
| | - Elías L Cruz
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Caseros, T4001MVB San Miguel de Tucumán, Tucumán, Argentina.
| | - Lucía I C Figueroa
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Caseros, T4001MVB San Miguel de Tucumán, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 450, 4000 San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
13
|
Boyer A, Ning P, Killey D, Klukas M, Rowan D, Simpson AJ, Passeport E. Strontium adsorption and desorption in wetlands: Role of organic matter functional groups and environmental implications. WATER RESEARCH 2018; 133:27-36. [PMID: 29353697 DOI: 10.1016/j.watres.2018.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Strontium (Sr) is a chemical element that is often used as a tracer in hydrogeochemical studies, and is ubiquitously distributed as a radioactive contaminant in nuclear sites in the form of strontium-90 (Sr-90). At the interface between groundwater and surface water, wetlands possess unique hydrogeochemical properties whose impact on Sr transport has not been investigated thoroughly. In this study, the adsorption and desorption of Sr was investigated on six natural wetland substrates and two mixes of exogenous media and wetland sediment: winter and summer wetland sediments, decayed cattails, wood, leaf litter, moss, bone charcoal, and clinoptilolite. The composition of the organic matter was characterized using carbon-13, solid phase Nuclear Magnetic Resonance analysis. The range of the substrates' adsorption coefficients obtained could be explained by factors indicative of proteins in the organic matter, which were shown to support strong and poorly reversible Sr adsorption. In contrast, the proportion of carbohydrates and lignin were found to be indicative of lower adsorption coefficients and higher desorption. The implications of these results for Sr pollution remediation in wetlands are discussed.
Collapse
Affiliation(s)
- Antoine Boyer
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto M5S 35E, Canada
| | - Paris Ning
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto M1C 1A4, Canada
| | - Doug Killey
- Canadian Nuclear Laboratories, 286 Plant Rd, Chalk River K0J 1J0, Canada
| | - Martin Klukas
- Canadian Nuclear Laboratories, 286 Plant Rd, Chalk River K0J 1J0, Canada
| | - David Rowan
- Canadian Nuclear Laboratories, 286 Plant Rd, Chalk River K0J 1J0, Canada
| | - Andre J Simpson
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto M1C 1A4, Canada
| | - Elodie Passeport
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto M5S 35E, Canada; Department of Civil Engineering, University of Toronto, 35 St George St., Toronto M5S 1A4, Canada.
| |
Collapse
|
14
|
Li Q, Csetenyi L, Paton GI, Gadd GM. CaCO3and SrCO3bioprecipitation by fungi isolated from calcareous soil. Environ Microbiol 2015; 17:3082-97. [DOI: 10.1111/1462-2920.12954] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Qianwei Li
- Geomicrobiology Group; College of Life Sciences; University of Dundee; Dundee DD1 5EH Scotland UK
| | - Laszlo Csetenyi
- Concrete Technology Group; Department of Civil Engineering; University of Dundee; Dundee DD1 4HN Scotland UK
| | - Graeme Iain Paton
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen AB24 3UU Scotland UK
| | - Geoffrey Michael Gadd
- Geomicrobiology Group; College of Life Sciences; University of Dundee; Dundee DD1 5EH Scotland UK
- Laboratory of Environmental Pollution and Bioremediation; Xinjiang Institute of Ecology and Geography; Chinese Academy of Sciences; Urumqi 830011 China
| |
Collapse
|
15
|
Zhou L, Wang Y, Zou H, Liang X, Zeng K, Liu Z, Adesina AA. Biosorption characteristics of uranium(VI) and thorium(IV) ions from aqueous solution using CaCl2-modified Giant Kelp biomass. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-4166-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Abigail. M EA, Samuel MS, Chidambaram R. Hexavalent chromium biosorption studies using Penicillium griseofulvum MSR1 a novel isolate from tannery effluent site: Box–Behnken optimization, equilibrium, kinetics and thermodynamic studies. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2014.11.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Wang L, Liu X, Chen XF, Lee DJ, Tay JH, Zhang Y, Wan CL. Biosorption of Sr(II) from aqueous solutions using aerobic granules: equilibrium and mechanisms. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-4084-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Vashnia S, Tavakoli H, Cheraghali R, Sepehrian H. Supporting of Lead Hexacyanoferrate on Mesoporous MCM-41 and its use as Effective Adsorbent for Strontium: Equilibrium, Kinetic, and Thermodynamic Studies. SEP SCI TECHNOL 2014. [DOI: 10.1080/01496395.2013.828310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Imessaoudene D, Hanini S, Bouzidi A. Biosorption of strontium from aqueous solutions onto spent coffee grounds. J Radioanal Nucl Chem 2013. [DOI: 10.1007/s10967-013-2510-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|