1
|
Zhang L, Zhang Y, Li J, Qi Y, Li L, Qin K, Lu Y, Liu C. Effect of fertilization on the degradation and enantioselectivity of fipronil in soil. PEST MANAGEMENT SCIENCE 2023; 79:5283-5291. [PMID: 37615248 DOI: 10.1002/ps.7737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Fertilizers and pesticides are commonly used simultaneously in agriculture. However, the effects of common fertilizers on the dissipation, enantioselectivity, and metabolites of the chiral insecticide fipronil in soil are yet to be reported. RESULT An enantioselective method for detecting fipronil enantiomers and their metabolites in different soil matrices was developed using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The results showed that organic and compound fertilizers significantly decreased the degradation of S- and R-fipronil, whereas phosphate and microbial fertilizers slightly reduced fipronil dissipation. The half-life values for S- and R-fipronil were 43.3 and 28.9 days, 99.0 and 63.0 days, 69.3 and 43.3 days, 46.2 and 30.1 days, and 43.3 and 31.5 days, respectively, in the control and the four fertilizer treatments, respectively. The enantioselectivity of fipronil enantiomers occurred and R-fipronil exhibited preferential degradation with an enantiomeric fraction (EF) of 0.4900-0.6238 in all treatments; but the four tested fertilizers decreased enantioselectivity with EF values changed from 0.4970 to 0.6238 in the control to 0.4900-0.6171 in fertilizer treatments. Two metabolites, fipronil sulfone and sulfide, were produced, and their amounts increased with culture time in all treatments. Fertilization reduced the content of fipronil sulfide and sulfone but hardly reduced the total amount of fipronil and its metabolites. CONCLUSION Fertilizers affect the environmental behavior of fipronil in the soil. Fertilization alters the soil bacterial community, which may be an important factor. This influence is relatively complicated and should be comprehensively considered in the environmental risk assessment of pesticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Leihong Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Yirong Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Jindong Li
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Taiyuan), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Taiyuan, China
| | - Yanli Qi
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Taiyuan), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Taiyuan, China
| | - Li Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Kaikai Qin
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Yongyue Lu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Chenglan Liu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Ahmad S, Chandrasekaran M, Ahmad HW. Investigation of the Persistence, Toxicological Effects, and Ecological Issues of S-Triazine Herbicides and Their Biodegradation Using Emerging Technologies: A Review. Microorganisms 2023; 11:2558. [PMID: 37894216 PMCID: PMC10609637 DOI: 10.3390/microorganisms11102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
S-triazines are a group of herbicides that are extensively applied to control broadleaf weeds and grasses in agricultural production. They are mainly taken up through plant roots and are transformed by xylem tissues throughout the plant system. They are highly persistent and have a long half-life in the environment. Due to imprudent use, their toxic residues have enormously increased in the last few years and are frequently detected in food commodities, which causes chronic diseases in humans and mammals. However, for the safety of the environment and the diversity of living organisms, the removal of s-triazine herbicides has received widespread attention. In this review, the degradation of s-triazine herbicides and their intermediates by indigenous microbial species, genes, enzymes, plants, and nanoparticles are systematically investigated. The hydrolytic degradation of substituents on the s-triazine ring is catalyzed by enzymes from the amidohydrolase superfamily and yields cyanuric acid as an intermediate. Cyanuric acid is further metabolized into ammonia and carbon dioxide. Microbial-free cells efficiently degrade s-triazine herbicides in laboratory as well as field trials. Additionally, the combinatorial approach of nanomaterials with indigenous microbes has vast potential and considered sustainable for removing toxic residues in the agroecosystem. Due to their smaller size and unique properties, they are equally distributed in sediments, soil, water bodies, and even small crevices. Finally, this paper highlights the implementation of bioinformatics and molecular tools, which provide a myriad of new methods to monitor the biodegradation of s-triazine herbicides and help to identify the diverse number of microbial communities that actively participate in the biodegradation process.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Environmental Sustainability & Health Institute (ESHI), City Campus, School of Food Science & Environmental Health, Technological University Dublin, Grangegorman Lower, D07 EWV4 Dublin, Ireland
- Key Laboratory of Integrated Pest Management of Crop in South China, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture and Rural Affairs, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Department of Entomology, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan
| | - Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, Sejong University, Neungdong-ro 209, Seoul 05006, Republic of Korea;
| | - Hafiz Waqas Ahmad
- Department of Food Engineering, Faculty of Agricultural Engineering & Technology, University of Agriculture, Faisalabad 38000, Pakistan;
| |
Collapse
|
3
|
Zhang F, Sun S, Rong Y, Mao L, Yang S, Qian L, Li R, Zheng Y. Enhanced phytoremediation of atrazine-contaminated soil by vetiver (Chrysopogon zizanioides L.) and associated bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44415-44429. [PMID: 36690855 DOI: 10.1007/s11356-023-25395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
The intensive and long-term use of atrazine (ATZ) has led to the contamination of agricultural soils and non-target organisms, posing a series of threats to human health through the transmission of the food chain. In this study, a 60-day greenhouse pot experiment was carried out to explore the phytoremediation by Chrysopogon zizanioides L. (vetiver). The uptake, accumulation, distribution, and removal of ATZ were investigated, and the degradation mechanisms were elucidated. The results showed that the growth of vetiver was inhibited in the first 10 days of the incubation; subsequently, the plant recovered rapidly with time going. Vetiver grass was capable of taking up ATZ from the soil, with root concentration factor ranging from 2.36 to 15.55, and translocating to the shoots, with shoot concentration factor ranging from 7.51 to 17.52. The dissipation of ATZ in the rhizosphere soil (97.51%) was significantly higher than that in the vetiver-unplanted soil (85.14%) at day 60. Metabolites were identified as hydroxyatrazine (HA), deethylatrazine (DEA), deisopropylatrazine (DIA), and didealkylatrazine (DDA) in the samples of the shoots and roots of vetiver as well as the soils treated with ATZ. HA, DEA, DIA, and DDA were reported first time as metabolites of ATZ in shoots and roots of vetiver grown in soil. The presence of vetiver changed the formation and distribution of the dealkylated products in the rhizosphere soil, which remarkably enhanced the occurrence of DEA, DIA, and DDA. Arthrobacter, Bradyrhizobium, Nocardioides, and Rhodococcus were the major atrazine-degrading bacterial genera, which might be responsible for ATZ degradation in the rhizosphere soil. Our findings suggested that vetiver grass can significantly promote ATZ degradation in the soil, and it could be a strategy for remediation of the atrazine-contaminated agricultural soil.
Collapse
Affiliation(s)
- Faming Zhang
- Faculty of Plant Protection, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Shixian Sun
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Kunming, 650224, People's Republic of China
- National Plateau Wetlands Research Center, Southwest Forestry University, Kunming, 650224, People's Republic of China
| | - Yuhong Rong
- Faculty of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, People's Republic of China
| | - Lili Mao
- Faculty of Plant Protection, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Shuchun Yang
- Faculty of Resource and Environment, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Ling Qian
- Faculty of Plant Protection, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Rongbiao Li
- Faculty of Resource and Environment, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Yi Zheng
- Faculty of Plant Protection, Yunnan Agricultural University, Kunming, 650201, People's Republic of China.
- Department of President Office, Yunnan Open University, Kunming, 650500, People's Republic of China.
| |
Collapse
|
4
|
Guo X, Xie C, Wang L, Li Q, Wang Y. Biodegradation of persistent environmental pollutants by Arthrobacter sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8429-8443. [PMID: 30706270 DOI: 10.1007/s11356-019-04358-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 01/23/2019] [Indexed: 05/17/2023]
Abstract
Persistent environmental pollutants are a growing problem around the world. The effective control of the pollutants is of great significance for human health. Some microbes, especially Arthrobacter, can degrade pollutants into nontoxic substances in various ways. Here, we review the biological properties of Arthrobacter adapting to a variety of environmental stresses, including starvation, hypertonic and hypotonic condition, oxidative stress, heavy metal stress, and low-temperature stress. Furthermore, we categorized the Arthrobacter species that can degrade triazines, organophosphorus, alkaloids, benzene, and its derivatives. Metabolic pathways behind the various biodegradation processes are further discussed. This review will be a helpful reference for comprehensive utilization of Arthrobacter species to tackle environmental pollutants.
Collapse
Affiliation(s)
- Xiaohong Guo
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Chengyun Xie
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Lijuan Wang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Qinfan Li
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Yan Wang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Liu H, Zhang L, Wang P, Liu D, Zhou Z. Enantioselective dissipation of pyriproxyfen in soil under fertilizers use. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:404-411. [PMID: 30366274 DOI: 10.1016/j.ecoenv.2018.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
An enantioselective method of pyriproxyfen enantiomers in fertilized soil was established on Lux Cellulose-3 column using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The effects of urea, potassium dihydrogen phosphate, organic fertilizer and compound fertilizer on the dissipation of pyriproxyfen in soil were investigated. Studies have shown that pyriproxyfen had a good linearity in the range of 0.050-7.5 μg/g. The method LODs and LOQs of two enantiomers were 0.0032-0.015 μg/g and 0.050 μg/g, respectively. The recoveries of two enantiomers ranged from 80.61% to 110.86%, intra-day together with inter-day RSDs of 1.38-12.52%. The results indicated that compound fertilizer could promote the dissipation of pyriproxyfen in soil, while the organic fertilizer, potassium dihydrogen phosphate and urea slowed down the dissipation of pyriproxyfen. Enantioselective dissipation of pyriproxyfen enantiomers occurred in blank soil and fertilized soil but performed not obviously. Pyriproxyfen almost not dissipated for 42 d when urea was added. These results revealed that the use of fertilizers would have impacts on the behaviors of this pesticide. The impacts were relatively complex which should be fully considered in future environmental risk evaluation.
Collapse
Affiliation(s)
- Hui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Linlin Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China.
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
6
|
Huang X, He J, Yan X, Hong Q, Chen K, He Q, Zhang L, Liu X, Chuang S, Li S, Jiang J. Microbial catabolism of chemical herbicides: Microbial resources, metabolic pathways and catabolic genes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:272-297. [PMID: 29183604 DOI: 10.1016/j.pestbp.2016.11.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 06/07/2023]
Abstract
Chemical herbicides are widely used to control weeds and are frequently detected as contaminants in the environment. Due to their toxicity, the environmental fate of herbicides is of great concern. Microbial catabolism is considered the major pathway for the dissipation of herbicides in the environment. In recent decades, there have been an increasing number of reports on the catabolism of various herbicides by microorganisms. This review presents an overview of the recent advances in the microbial catabolism of various herbicides, including phenoxyacetic acid, chlorinated benzoic acid, diphenyl ether, tetra-substituted benzene, sulfonamide, imidazolinone, aryloxyphenoxypropionate, phenylurea, dinitroaniline, s-triazine, chloroacetanilide, organophosphorus, thiocarbamate, trazinone, triketone, pyrimidinylthiobenzoate, benzonitrile, isoxazole and bipyridinium herbicides. This review highlights the microbial resources that are capable of catabolizing these herbicides and the mechanisms involved in the catabolism. Furthermore, the application of herbicide-degrading strains to clean up herbicide-contaminated sites and the construction of genetically modified herbicide-resistant crops are discussed.
Collapse
Affiliation(s)
- Xing Huang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Jian He
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Xin Yan
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Qing Hong
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Kai Chen
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Qin He
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Long Zhang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Xiaowei Liu
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Shaochuang Chuang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Shunpeng Li
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China.
| |
Collapse
|
7
|
Cycoń M, Mrozik A, Piotrowska-Seget Z. Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: A review. CHEMOSPHERE 2017; 172:52-71. [PMID: 28061345 DOI: 10.1016/j.chemosphere.2016.12.129] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 12/20/2016] [Accepted: 12/26/2016] [Indexed: 06/06/2023]
Abstract
Bioaugmentation, a green technology, is defined as the improvement of the degradative capacity of contaminated areas by introducing specific microorganisms, has emerged as the most advantageous method for cleaning-up soil contaminated with pesticides. The present review discusses the selection of pesticide-utilising microorganisms from various sources, their potential for the degradation of pesticides from different chemical classes in liquid media as well as soil-related case studies in a laboratory, a greenhouse and field conditions. The paper is focused on the microbial degradation of the most common pesticides that have been used for many years such as organochlorinated and organophosphorus pesticides, triazines, pyrethroids, carbamate, chloroacetamide, benzimidazole and derivatives of phenoxyacetic acid. Special attention is paid to bacterial strains from the genera Alcaligenes, Arthrobacter, Bacillus, Brucella, Burkholderia, Catellibacterium, Pichia, Pseudomonas, Rhodococcus, Serratia, Sphingomonas, Stenotrophomonas, Streptomyces and Verticillum, which have potential applications in the bioremediation of pesticide-contaminated soils using bioaugmentation technology. Since many factors strongly influence the success of bioaugmentation, selected abiotic and biotic factors such as pH, temperature, type of soil, pesticide concentration, content of water and organic matter, additional carbon and nitrogen sources, inoculum size, interactions between the introduced strains and autochthonous microorganisms as well as the survival of inoculants were presented.
Collapse
Affiliation(s)
- Mariusz Cycoń
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Agnieszka Mrozik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Zofia Piotrowska-Seget
- Department of Microbiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
8
|
Mauffret A, Baran N, Joulian C. Effect of pesticides and metabolites on groundwater bacterial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:879-887. [PMID: 27838578 DOI: 10.1016/j.scitotenv.2016.10.108] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 06/06/2023]
Abstract
We assessed the effect of pesticides, especially commonly detected herbicides, on bacterial communities in groundwater. To this end, we used a combined approach with i) triazine-spiked experiments at environmentally relevant concentrations (1 and 10μg/L) in waters with contrasting contamination histories, and ii) in situ monitoring in a rural aquifer, where many additional biotic and abiotic parameters also affect the community. Microbial community was characterized by fingerprinting techniques (CE-SSCP), gene presence (atzA/B/C/D/E/F and amoA genes) and abundance (16S RNA, napA and narG genes). During triazine-spiked experiments, the bacterial community structure in reference water was modified following an exposure to atrazine (ATZ) and/or its metabolite desethylatrazine (DEA) at 1μg/L; in historically-contaminated water, the bacterial community structure was modified following an exposure to 10μg/L ATZ/DEA. Similarly, biodiversity indices and biomass in the reference water appeared affected at lower triazine concentrations than in the historically-contaminated water, though these end-points are less sensitive than the community structure. Our results thus suggest that the history of contamination induced a community tolerance to the tested triazines. ATZ and DEA were not degraded during the experiment and this was consistent with the absence of atz genes involved in their degradation in none of the tested conditions. In field monitoring, triazines that represent a historical and diffuse contamination of groundwater, participate in the microbial community structure, confirming the triazine effect observed under laboratory conditions. Other herbicides, such as chloroacetanilides that are applied today, did not appear to affect the whole community structure; they however induced a slight, but significant, increase in the abundance of nitrate-reducing bacteria. To our best knowledge, this is the first study on the microbial ecotoxicology of pesticides and their metabolites at environmentally relevant concentrations in groundwater.
Collapse
Affiliation(s)
| | - Nicole Baran
- The French Geological Survey (BRGM), Orléans, France
| | | |
Collapse
|
9
|
Xia ZY, Zhang L, Zhao Y, Yan X, Li SP, Gu T, Jiang JD. Biodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by a New Isolated Strain of Achromobacter sp. LZ35. Curr Microbiol 2016; 74:193-202. [PMID: 27933337 DOI: 10.1007/s00284-016-1173-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/25/2016] [Indexed: 01/18/2023]
Abstract
In this study, a bacterial strain of Achromobacter sp. LZ35, which was capable of utilizing 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxy acetic acid (MCPA) as the sole sources of carbon and energy for growth, was isolated from the soil in a disused pesticide factory in Suzhou, China. The optimal 2,4-D degradation by strain LZ35 occurred at 30 °C and pH 8.0 when the initial 2,4-D concentration was 200 mg L-1. Strain LZ35 harbored the conserved 2,4-D/alpha-ketoglutarate dioxygenase (96%) and 2,4-dichlorophenol hydroxylase (99%), and catabolized 2,4-D via the intermediate 2,4-dichlorophenol. The inoculation of 7.8 × 106 CFU g-1 soil of strain LZ35 cells to 2,4-D-contaminated soil could efficiently remove over 75 and 90% of 100 and 50 mg L-1 2,4-D in 12 days and significantly released the phytotoxicity of maize caused by the 2,4-D residue. This is the first report of an Achromobacter sp. strain that was capable of mineralizing both 2,4-D and MCPA. This study provides us a promising candidate for its application in the bioremediation of 2,4-D- or MCPA-contaminated sites.
Collapse
Affiliation(s)
- Zhen-Yuan Xia
- Yunnan Academy of Tobacco Agricultural Science, Kunming, 650031, People's Republic of China
| | - Long Zhang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yan Zhao
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xin Yan
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shun-Peng Li
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tao Gu
- The Institute of Plant Protection, Jiangsu Agricultural Academy Science, Nanjing, People's Republic of China.
| | - Jian-Dong Jiang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
10
|
Hatakeyama T, Takagi K. Bacterial biodegradation of melamine-contaminated aged soil: influence of different pre-culture media or addition of activation material. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14997-15002. [PMID: 27080407 DOI: 10.1007/s11356-016-6616-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/03/2016] [Indexed: 06/05/2023]
Abstract
This study aimed to investigate the biodegrading potential of Arthrobacter sp. MCO, Arthrobacter sp. CSP, and Nocardioides sp. ATD6 in melamine-contaminated upland soil (melamine: approx. 10.5 mg/kg dry weight) after 30 days of incubation. The soil sample used in this study had undergone annual treatment of lime nitrogen, which included melamine; it was aged for more than 10 years in field. When R2A broth was used as the pre-culture medium, Arthrobacter sp. MCO could degrade 55 % of melamine after 30 days of incubation, but the other strains could hardly degrade melamine (approximately 25 %). The addition of trimethylglycine (betaine) in soil as an activation material enhanced the degradation rate of melamine by each strain; more than 50 % of melamine was degraded by all strains after 30 days of incubation. In particular, strain MCO could degrade 72 % of melamine. When the strains were pre-cultured in R2A broth containing melamine, the degradation rate of melamine in soil increased remarkably. The highest (72 %) melamine degradation rate was noted when strain MCO was used with betaine addition.
Collapse
Affiliation(s)
- Takashi Hatakeyama
- Organochemicals Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| | - Kazuhiro Takagi
- Organochemicals Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan.
| |
Collapse
|
11
|
Dai Y, Li N, Zhao Q, Xie S. Bioremediation using Novosphingobium strain DY4 for 2,4-dichlorophenoxyacetic acid-contaminated soil and impact on microbial community structure. Biodegradation 2015; 26:161-70. [PMID: 25743701 DOI: 10.1007/s10532-015-9724-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
Abstract
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is commonly used for weed control. The ubiquity of 2,4-D has gained increasing environmental concerns. Biodegradation is an attractive way to clean up 2,4-D in contaminated soil. However, information on the bioaugmentation trial for remediating contaminated soil is still very limited. The impact of bioaugmentation using 2,4-D-degraders on soil microbial community remains unknown. The present study investigated the bioremediation potential of a novel degrader (strain DY4) for heavily 2,4-D-polluted soil and its bioaugmentation impact on microbial community structure. The strain DY4 was classified as a Novosphingobium species within class Alphaproteobacteria and harbored 2,4-D-degrading TfdAα gene. More than 50 and 95 % of the herbicide could be dissipated in bioaugmented soil (amended with 200 mg/kg 2,4-D) respectively in 3-4 and 5-7 days after inoculation of Novosphingobium strain DY4. A significant growth of the strain DY4 was observed in bioaugmented soil with the biodegradation of 2,4-D. Moreover, herbicide application significantly altered soil bacterial community structure but bioaumentation using the strain DY4 showed a relatively weak impact.
Collapse
Affiliation(s)
- Yu Dai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | | | | | | |
Collapse
|
12
|
Wang Z, Yang Y, Sun W, Dai Y, Xie S. Variation of nonylphenol-degrading gene abundance and bacterial community structure in bioaugmented sediment microcosm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2342-2349. [PMID: 25277711 DOI: 10.1007/s11356-014-3625-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/16/2014] [Indexed: 06/03/2023]
Abstract
Nonylphenol (NP) can accumulate in river sediment. Bioaugmentation is an attractive option to dissipate heavy NP pollution in river sediment. In this study, two NP degraders were isolated from crude oil-polluted soil and river sediment. Microcosms were constructed to test their ability to degrade NP in river sediment. The shift in the proportion of NP-degrading genes and bacterial community structure in sediment microcosms were characterized using quantitative PCR assay and terminal restriction fragment length polymorphism analysis, respectively. Phylogenetic analysis indicated that the soil isolate belonged to genus Stenotrophomonas, while the sediment isolate was a Sphingobium species. Both of them could almost completely clean up a high level of NP in river sediment (150 mg/kg NP) in 10 or 14 days after inoculation. An increase in the proportion of alkB and sMO genes was observed in sediment microcosms inoculated with Stenotrophomonas strain Y1 and Sphingobium strain Y2, respectively. Moreover, bioaugmentation using Sphingobium strain Y2 could have a strong impact on sediment bacterial community structure, while inoculation of Stenotrophomonas strain Y1 illustrated a weak impact. This study can provide some new insights towards NP biodegradation and bioremediation.
Collapse
Affiliation(s)
- Zhao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|