1
|
Li S, Shen W, Lian S, Wu Y, Qu Y, Deng Y. DARHD: A sequence database for aromatic ring-hydroxylating dioxygenase analysis and primer evaluation. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129230. [PMID: 35739750 DOI: 10.1016/j.jhazmat.2022.129230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Biodegradation of aromatic compounds is ubiquitous in the environment and important for controlling organic pollutants. Aromatic ring-hydroxylating dioxygenases (ARHDs) are responsible for the first and rate-limiting step of aerobic biodegradation of aromatic compounds. The ARHD α subunit is a good biomarker for studying functional microorganisms in the environment, however their diversity and corresponding primer coverage are unclear, both of which require a comprehensive sequence database for the ARHD α subunit. Here amino acid sequences of the ARHD α subunit were collected, and a total of 103 sequences were selected as seed sequences that were distributed in 72 bacterial genera with 34 gene names. Based on both homolog search and keyword confirmation against the GenBank, a sequence database of ARHD (DARHD) has been established and 6367 highly credible sequences were retrieved. DARHD contained 407 bacterial genera capable of degrading 38 aromatic substrates, and intricate relationships among the gene name, aromatic substrate and microbial taxa were observed. Thereafter, a total of 136 pairs of primers were collected and assessed. Results showed coverages of most published primers were low. Our research provides new insights for understanding the diversity of ARHD α subunit, and gives guidance on the design and application of primers in the future.
Collapse
Affiliation(s)
- Shuzhen Li
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wenli Shen
- Institute for Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Shengyang Lian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yueni Wu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute for Marine Science and Technology, Shandong University, Qingdao 266237, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Yi M, Zhang L, Qin C, Lu P, Bai H, Han X, Yuan S. Temporal changes of microbial community structure and nitrogen cycling processes during the aerobic degradation of phenanthrene. CHEMOSPHERE 2022; 286:131709. [PMID: 34340117 DOI: 10.1016/j.chemosphere.2021.131709] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Phenanthrene (PHE) is frequently detected in worldwide soils. But it is still not clear that how the microbial community succession happens and the nitrogen-cycling processes alter during PHE degradation. In this study, the temporal changes of soil microbial community composition and nitrogen-cycling processes during the biodegradation of PHE (12 μg g-1) were explored. The results showed that the biodegradation of PHE followed the second-order kinetics with a half-life of 7 days. QPCR results demonstrated that the bacteria numbers increased by 67.1%-194.7% with PHE degradation, whereas, no significant change was observed in fungi numbers. Thus, high-throughput sequencing based on 16 S rRNA was conducted and showed that the abundances of Methylotenera, Comamonadaceae, and Nocardioides involved in PHE degradation and denitrification were significantly increased, while those of nitrogen-metabolism-related genera such as Nitrososphaeraceae, Nitrospira, Gemmatimonadacea were decreased in PHE-treated soil. Co-occurrence network analysis suggested that more complex interrelations were constructed, and Proteobacteria instead of Acidobacteriota formed intimate associations with other microbes in responding to PHE exposure. Additionally, the abundances of nifH and narG were significantly up-regulated in PHE-treated soil, while that of amoA especially AOAamoA was down-regulated. Finally, correlation analysis found several potential microbes (Methylotenera, Comamonadaceae, and Agromyces) that could couple PHE degradation and nitrogen transformation. This study confirmed that PHE could alter microbial community structure, change the native bacterial network, and disturb nitrogen-cycling processes.
Collapse
Affiliation(s)
- Meiling Yi
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Cunli Qin
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Peili Lu
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Hongcheng Bai
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Xinkuan Han
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shupei Yuan
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
| |
Collapse
|
3
|
Gu H, Yan K, You Q, Chen Y, Pan Y, Wang H, Wu L, Xu J. Soil indigenous microorganisms weaken the synergy of Massilia sp. WF1 and Phanerochaete chrysosporium in phenanthrene biodegradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146655. [PMID: 33798893 DOI: 10.1016/j.scitotenv.2021.146655] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Biodegradation is a promising way to reduce phenanthrene (PHE) in environment. PHE biodegradation by bioaugmentation of axenic and mixed cultures of Massilia sp. WF1 (a highly efficient PHE-degrading bacteria) and Phanerochaete chrysosporium (P. chrysosporium, an extensively researched model fungus in organic pollutant bioremediation) was investigated in aqueous and autoclaved/un-autoclaved soil cultures. In the liquid cultures, the strain WF1 could use PHE (ca. 10 mg L-1) as the sole carbon source, and the presence of d-fructose (500 mg L-1) had no obvious effect on its PHE degradation; while the opposite was observed for P. chrysosporium. The bioaugmentation of strain WF1 and P. chrysosporium co-culture showed the highest PHE-degradation efficiency, especially in the aqueous and the autoclaved soil (PHE, ca. 50 mg kg-1) cultures, indicating a synergistic interaction of the co-culture during PHE dissipation. It was further observed that the indigenous microorganisms (mainly the Gram-positive bacteria) played a dominant role during PHE biodegradation and showed an antagonistic action against the strain WF1-P. chrysosporium co-culture, which weakened the synergistic action of the co-culture in the un-autoclaved soil. Besides, the abundances of PAH-RHDα GP and nidA genes were negatively correlated with residual PHE in the soil. Our findings provide the scientific support for bioremediation of PAHs in environment.
Collapse
Affiliation(s)
- Haiping Gu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China; Department of Environmental Sciences, College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Kang Yan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Qi You
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Yuanzhi Chen
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China; Beihai Tieshangang District Human Resources and Social Security Bureau, Beihai, China
| | - Yunhui Pan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China.
| | - Laosheng Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China; Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Geng S, Cao W, Yuan J, Wang Y, Guo Y, Ding A, Zhu Y, Dou J. Microbial diversity and co-occurrence patterns in deep soils contaminated by polycyclic aromatic hydrocarbons (PAHs). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110931. [PMID: 32684516 DOI: 10.1016/j.ecoenv.2020.110931] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Numerous studies have enriched our knowledge of the microbial community composition and metabolic versatility of contaminated soil. However, there remains a substantial gap regarding the bioassembly patterns of the indigenous microbial community distribution in contaminated deep soils. Herein, the indigenous microbial community structure diversity, function, and co-occurrence relationships in aged PAH-contaminated deep soil collected from an abandoned chemical facility were investigated using high-throughput sequencing. The results showed that the dominant phyla in all samples were responsible for PAH degradation and included Proteobacteria (20.86%-81.37%), Chloroflexi (2.03%-28.44%), Firmicutes (3.06%-31.16%), Actinobacteria (2.92%-11.91%), Acidobacteria (0.41%-12.68%), and Nitrospirae (0.81%-9.21%). Eighty biomarkers were obtained by linear discriminant analysis of effect size (LEfSe), and most of these biomarkers were PAH degraders. Functional predictions using Tax4Fun indicated that the aged contaminated soil has the potential for PAH degradation. Statistical analysis showed that in contrast with the PAH concentration, edaphic properties (nutrients and pH) were significantly correlated (r > 0.25, P < 0.01) with the bacterial community and functional composition. Co-occurrence network analysis (modularity index of 0.781) revealed non-random assembly patterns of the bacterial communities in the PAH-contaminated soils. The modules in the network were mainly involved in carbon and nitrogen cycles, organic substance degradation, and biological electron transfer processes. Microbes from the same module had strong ecological linkages. Additionally, SAR202 clade, Thermoanaerobaculum, Nitrospira, and Xanthomonadales, which were identified as keystone species, played an irreplaceable role in the network. Overall, our results suggested that environmental factors such as nutrients and pH, together with ecological function, are the main factors driving the assembly of microbial communities in aged PAH-contaminated deep soils.
Collapse
Affiliation(s)
- Shuying Geng
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Wei Cao
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jing Yuan
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yingying Wang
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yanqing Guo
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Aizhong Ding
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yi Zhu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Junfeng Dou
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
5
|
Wolf DC, Cryder Z, Gan J. Soil bacterial community dynamics following surfactant addition and bioaugmentation in pyrene-contaminated soils. CHEMOSPHERE 2019; 231:93-102. [PMID: 31128356 DOI: 10.1016/j.chemosphere.2019.05.145] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Because of their toxic properties, polycyclic aromatic hydrocarbons (PAHs) are designated as priority pollutants. The low solubility and strong sorption of PAHs in soil often limits bioremediation. To increase PAH bioavailability and enhance microbial degradation, surfactants are often added to contaminated soils. However, the effects of surfactants on the PAH degradation capacities of soil microbes are generally neglected. In this study, 16S rRNA gene high-throughput sequencing was used to evaluate changes in the soil microbial community after the application of rhamnolipid biosurfactant or Brij-35 surfactant and Mycobacterium vanbaalenii PYR-1 bioaugmentation over a 50-d mineralization study in two soils contaminated with pyrene at 10 mg kg-1. The introduction of pyrene in both soils resulted in an increase in Firmicutes and a decrease in microbial richness and Shannon diversity index. Amendment of rhamnolipid at 1,400 μg g-1 to the native clay soil resulted in a decrease in Bacillus from 48% to 2%, which was accompanied with an increase in Mycoplana that accounted for 67% of the total genera relative abundance. Phylogenetic investigation of communities by reconstruction of unobserved states was used to predict the activity of functional genes involved in the PAH degradation KEGG pathway and determined that M. vanbaalenii PYR-1 bioaugmentation resulted in an increased number of functional genes utilized in PAH biodegradation. Results of this study provide a better understanding of the soil microbial dynamics in response to surfactant amendments in addition to bioaugmentation of a PAH-degrading microbe. This knowledge contributes to successful and efficient surfactant-enhanced bioremediation of PAH-contaminated soils.
Collapse
Affiliation(s)
- D C Wolf
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA 92521, USA.
| | - Z Cryder
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - J Gan
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
6
|
Liu XX, Hu X, Cao Y, Pang WJ, Huang JY, Guo P, Huang L. Biodegradation of Phenanthrene and Heavy Metal Removal by Acid-Tolerant Burkholderia fungorum FM-2. Front Microbiol 2019; 10:408. [PMID: 30930861 PMCID: PMC6427951 DOI: 10.3389/fmicb.2019.00408] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 02/18/2019] [Indexed: 11/13/2022] Open
Abstract
Phenanthrene (PHE) is a common pollutant of acidic and non-acidic environments that is recalcitrant to biodegradation. Herein, Burkholderia fungorum FM-2 (GenBank accession no. KM263605) was isolated from oil-contaminated soil in Xinjiang and characterized morphologically, physiologically, and phylogenetically. Environmental parameters including PHE concentration, pH, temperature, and salinity were optimized, and heavy metal tolerance was investigated. The MIC of strain FM-2 tolerant to Pb(II) and Cd(II) was 50 and 400 mg L−1, respectively, while the MIC of Zn(II) was >1,200 mg L−1. Atypically for a B. fungorum strain, FM-2 utilized PHE (300 mg L−1) as a sole carbon source over a wide pH range (between pH 3 and 9). PHE and heavy metal metabolism were assessed using gas chromatography (GC), inductively coupled plasma optical emission spectroscopy (ICP-OES), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), Fourier-transform infrared (FTIR) spectroscopy and ultraviolet (UV) absorption spectrometry. The effects of heavy metals on the bioremediation of PHE in soil were investigated, and the findings suggest that FM-2 has potential for combined bioremediation of soils co-contaminated with PHE and heavy metals.
Collapse
Affiliation(s)
- Xin-Xin Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Xin Hu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Yue Cao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Wen-Jing Pang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Jin-Yu Huang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Peng Guo
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Lei Huang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
7
|
Festa S, Macchi M, Cortés F, Morelli IS, Coppotelli BM. Monitoring the impact of bioaugmentation with a PAH-degrading strain on different soil microbiomes using pyrosequencing. FEMS Microbiol Ecol 2016; 92:fiw125. [PMID: 27279417 DOI: 10.1093/femsec/fiw125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2016] [Indexed: 11/15/2022] Open
Abstract
The effect of bioaugmentation with Sphingobium sp. AM strain on different soils microbiomes, pristine soil (PS), chronically contaminated soil (IPK) and recently contaminated soil (Phe) and their implications in bioremediation efficiency was studied by focusing on the ecology that drives bacterial communities in response to inoculation. AM strain draft genome codifies genes for metabolism of aromatic and aliphatic hydrocarbons. In Phe, the inoculation improved the elimination of phenanthrene during the whole treatment, whereas in IPK no improvement of degradation of any PAH was observed. Through the pyrosequencing analysis, we observed that inoculation managed to increase the richness and diversity in both contaminated microbiomes, therefore, independently of PAH degradation improvement, we observed clues of inoculant establishment, suggesting it may use other resources to survive. On the other hand, the inoculation did not influence the bacterial community of PS. On both contaminated microbiomes, incubation conditions produced a sharp increase on Actinomycetales and Sphingomonadales orders, while inoculation caused a relative decline of Actinomycetales. Inoculation of most diverse microbiomes, PS and Phe, produced a coupled increase of Sphingomonadales, Burkholderiales and Rhizobiales orders, although it may exist a synergy between those genera; our results suggest that this would not be directly related to PAH degradation.
Collapse
Affiliation(s)
- Sabrina Festa
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP, CCT-La Plata, CONICET), La Plata1900, Buenos Aires, Argentina
| | - Marianela Macchi
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP, CCT-La Plata, CONICET), La Plata1900, Buenos Aires, Argentina
| | - Federico Cortés
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Mar del Plata 7600, Argentina
| | - Irma S Morelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP, CCT-La Plata, CONICET), La Plata1900, Buenos Aires, Argentina Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata 1900, Argentina
| | - Bibiana M Coppotelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP, CCT-La Plata, CONICET), La Plata1900, Buenos Aires, Argentina
| |
Collapse
|
8
|
Merlin C, Devers M, Béguet J, Boggio B, Rouard N, Martin-Laurent F. Evaluation of the ecotoxicological impact of the organochlorine chlordecone on soil microbial community structure, abundance, and function. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4185-4198. [PMID: 26025175 DOI: 10.1007/s11356-015-4758-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
The insecticide chlordecone applied for decades in banana plantations currently contaminates 20,000 ha of arable land in the French West Indies. Although the impact of various pesticides on soil microorganisms has been studied, chlordecone toxicity to the soil microbial community has never been assessed. We investigated in two different soils (sandy loam and silty loam) exposed to different concentrations of CLD (D0, control; D1 and D10, 1 and 10 times the agronomical dose) over different periods of time (3, 7, and 32 days): (i) the fate of chlordecone by measuring (14)C-chlordecone mass balance and (ii) the impact of chlordecone on microbial community structure, abundance, and function, using standardized methods (-A-RISA, taxon-specific quantitative PCR (qPCR), and (14)C-compounds mineralizing activity). Mineralization of (14)C-chlordecone was inferior below 1 % of initial (14)C-activity. Less than 2 % of (14)C-activity was retrieved from the water-soluble fraction, while most of it remained in the organic-solvent-extractable fraction (75 % of initial (14)C-activity). Only 23 % of the remaining (14)C-activity was measured in nonextractable fraction. The fate of chlordecone significantly differed between the two soils. The soluble and nonextractable fractions were significantly higher in sandy loam soil than in silty loam soil. All the measured microbiological parameters allowed discriminating statistically the two soils and showed a variation over time. The genetic structure of the bacterial community remained insensitive to chlordecone exposure in silty loam soil. In response to chlordecone exposure, the abundance of Gram-negative bacterial groups (β-, γ-Proteobacteria, Planctomycetes, and Bacteroidetes) was significantly modified only in sandy loam soil. The mineralization of (14)C-sodium acetate and (14)C-2,4-D was insensitive to chlordecone exposure in silty loam soil. However, mineralization of (14)C-sodium acetate was significantly reduced in soil microcosms of sandy loam soil exposed to chlordecone as compared to the control (D0). These data show that chlordecone exposure induced changes in microbial community taxonomic composition and function in one of the two soils, suggesting microbial toxicity of this organochlorine.
Collapse
Affiliation(s)
- Chloé Merlin
- INRA, UMR 1347 Agroécologie, Pôle Ecoldur, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Marion Devers
- INRA, UMR 1347 Agroécologie, Pôle Ecoldur, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Jérémie Béguet
- INRA, UMR 1347 Agroécologie, Pôle Ecoldur, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Baptiste Boggio
- INRA, UMR 1347 Agroécologie, Pôle Ecoldur, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Nadine Rouard
- INRA, UMR 1347 Agroécologie, Pôle Ecoldur, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Fabrice Martin-Laurent
- INRA, UMR 1347 Agroécologie, Pôle Ecoldur, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France.
| |
Collapse
|
9
|
Storey S, Ashaari M, McCabe G, Harty M, Dempsey R, Doyle O, Clipson N, Doyle E. Microbial community structure during fluoranthene degradation in the presence of plants. J Appl Microbiol 2014; 117:74-84. [DOI: 10.1111/jam.12518] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/25/2014] [Accepted: 04/03/2014] [Indexed: 11/29/2022]
Affiliation(s)
- S. Storey
- Environmental Microbiology Group; School of Biology and Environmental Science and Earth Institute; University College Dublin; Dublin 4 Ireland
| | - M.M. Ashaari
- Environmental Microbiology Group; School of Biology and Environmental Science and Earth Institute; University College Dublin; Dublin 4 Ireland
| | - G. McCabe
- School of Agriculture and Food Science; University College Dublin; Dublin 4 Ireland
| | - M. Harty
- School of Agriculture and Food Science; University College Dublin; Dublin 4 Ireland
| | - R. Dempsey
- Environmental Microbiology Group; School of Biology and Environmental Science and Earth Institute; University College Dublin; Dublin 4 Ireland
| | - O. Doyle
- School of Agriculture and Food Science; University College Dublin; Dublin 4 Ireland
| | - N. Clipson
- Environmental Microbiology Group; School of Biology and Environmental Science and Earth Institute; University College Dublin; Dublin 4 Ireland
| | - E.M. Doyle
- Environmental Microbiology Group; School of Biology and Environmental Science and Earth Institute; University College Dublin; Dublin 4 Ireland
| |
Collapse
|