1
|
Mehmandost N, Goudarzi N, Arab Chamjangali M, Bagherian G. Application of random forest for modeling batch and continuous fixed-bed removal of crystal violet from aqueous solutions using Gypsophila aretioides stem-based biosorbent. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120292. [PMID: 34530199 DOI: 10.1016/j.saa.2021.120292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/31/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
In this work, the Gypsophila aretioides (GYP-A) stem is used as a biosorbent to remove crystal violet (CV) by the static and dynamic systems from aqueous solutions; the biosorbent is interesting in green chemistry and, on the other hand, cheaper than activated carbon and does not have the limitation of industrialization. The effects of different operating parameters such as pH(3-9), biosorbent dosage(0.4-1.8 mg/L), and initial concentration of CV(100-250 mg/L) and time for the batch method and the bed height, inlet CV concentration(75-250 mg/L), and flow rate(3-8) on the breakthrough curves for the continuous method is investigated. The result of CV adsorption onto GYP-A using the batch method indicates that the model fits Freundlich > Temkin > Langmuir > R-D, and R2 equal 0.9953, 0.9847, 0.9161, 0.7909 were obtained for isotherm model, respectively. A pseudo-second-order model (R2 = 0.9995-0.9997) is recommended to describe the adsorption kinetics. The Thomas and Yoon-Nelson models were analyzed to study the adsorption kinetics. The random forest model shows an excellent ability to predict the parameters involved in the CV adsorption process with appropriate accuracy and useable for large data, robust against noise; it can be very effective in selecting important variables.
Collapse
Affiliation(s)
- Nasrin Mehmandost
- College of Chemistry, Shahrood University of Technology, PO Box 36155-316, Shahrood, Iran
| | - Nasser Goudarzi
- College of Chemistry, Shahrood University of Technology, PO Box 36155-316, Shahrood, Iran.
| | | | - Ghadamali Bagherian
- College of Chemistry, Shahrood University of Technology, PO Box 36155-316, Shahrood, Iran
| |
Collapse
|
2
|
El-Bindary M, El-Desouky M, El-Bindary A. Adsorption of industrial dye from aqueous solutions onto thermally treated green adsorbent: A complete batch system evaluation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117082] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
3
|
Jin M, Shen H, Fang J, Zhu Z, Chen J, Zhong G, Liu X, Chen F, Deng M. Facile synthesis of the crescent-like SnS nanocrystals capped by polyvinyl pyrrolidone and its performance of adsorbing dyes. J Colloid Interface Sci 2021; 599:291-299. [PMID: 33945976 DOI: 10.1016/j.jcis.2021.04.106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 11/28/2022]
Abstract
With using Sn2+ as tin source, l-cysteine as sulphur source and polyvinyl pyrrolidone (PVP, Mw = 1300000) as surfactant, a novel three-dimensional and crescent-like SnS nanocrystal (NCs) was successfully synthesized in a one-pot hydrothermal method. The as-prepared SnS NCs displayed uniform crescent-like morphological structure, and demonstrated excellent efficiency for the adsorption of cationic dyes such as rhodamine B (RhB) and methylene blue (MB). Kinetic analysis indicated that the adsorption process followed the pseudo second-order model, and the maximum capacity of the SnS NCs to adsorb MB was determined by Langmuir equation to be 252 mg⋅g-1 at 298 K. The pH dependence of SnS NCs on the adsorption of cationic dyes and the characterization of zeta potential jointly suggested the existence of electrostatic attraction in the process. Overall, this study showed that electrostatic field of functional groups and the capping of PVP could significantly enhance the adsorption performance of the SnS NCs, and also provides a novel insight into the development of highly efficient inorganic adsorbents for cationic dyes.
Collapse
Affiliation(s)
- Mengru Jin
- Laboratory of Polymer Materials and Engineering, NingboTech University, No.1 Qianhu South Road, Ningbo 315100, China
| | - Haifeng Shen
- Laboratory of Polymer Materials and Engineering, NingboTech University, No.1 Qianhu South Road, Ningbo 315100, China
| | - Jiabao Fang
- Laboratory of Polymer Materials and Engineering, NingboTech University, No.1 Qianhu South Road, Ningbo 315100, China
| | - Zhanjun Zhu
- Laboratory of Polymer Materials and Engineering, NingboTech University, No.1 Qianhu South Road, Ningbo 315100, China
| | - Jue Chen
- Laboratory of Polymer Materials and Engineering, NingboTech University, No.1 Qianhu South Road, Ningbo 315100, China
| | - Guolun Zhong
- Laboratory of Polymer Materials and Engineering, NingboTech University, No.1 Qianhu South Road, Ningbo 315100, China
| | - Xinwen Liu
- School of Materials and Chemical Engineering, Ningbo University of Technology, No.201 Fenghua Road, Ningbo 315211, China
| | - Fei Chen
- Laboratory of Polymer Materials and Engineering, NingboTech University, No.1 Qianhu South Road, Ningbo 315100, China.
| | - Meng Deng
- Laboratory of Polymer Materials and Engineering, NingboTech University, No.1 Qianhu South Road, Ningbo 315100, China.
| |
Collapse
|
4
|
Facile one-pot in-situ synthesis of novel graphene oxide-cellulose nanocomposite for enhanced azo dye adsorption at optimized conditions. Carbohydr Polym 2020; 246:116661. [DOI: 10.1016/j.carbpol.2020.116661] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/29/2020] [Accepted: 06/14/2020] [Indexed: 01/18/2023]
|
5
|
Dąbek L, Picheta-Oleś A, Szeląg B, Szulżyk-Cieplak J, Łagód G. Modeling and Optimization of Pollutants Removal during Simultaneous Adsorption onto Activated Carbon with Advanced Oxidation in Aqueous Environment. MATERIALS 2020; 13:ma13194220. [PMID: 32977457 PMCID: PMC7579614 DOI: 10.3390/ma13194220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
The paper presents the results of studies on the modeling and optimization of organic pollutant removal from an aqueous solution in the course of simultaneous adsorption onto activated carbons with varied physical characteristics and oxidation using H2O2. The methodology for determining the models used for predicting the sorption and catalytic parameters in the process was presented. The analysis of the influence of the sorption and catalytic parameters of activated carbons as well as the oxidizer dose on the removal dynamics of organic dyes-phenol red and crystal violet-was carried out based on the designated empirical models. The obtained results confirm the influence of specific surface area (S) of the activated carbon and oxidizer dose on the values of the reaction rate constants related to the removal of pollutants from the solution in a simultaneous process. It was observed that the lower the specific surface area of carbon (S), the greater the influence of the oxidizer on the removal of pollutants from the solution. The proposed model, used for optimization of parameters in a simultaneous process, enables to analyze the effect of selected sorbents as well as the type and dose of the applied oxidizer on the pollutant removal efficiency. The practical application of models will enable to optimize the selection of a sorbent and oxidizer used simultaneously for a given group of pollutants and thus reduce the process costs.
Collapse
Affiliation(s)
- Lidia Dąbek
- Faculty of Environmental, Geomatic and Energy Engineering, Kielce University of Technology, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland;
| | - Anna Picheta-Oleś
- Department of Environment and Waste Management, Marshal’s Office of the Świętokrzyskie Voivodeship, IX Wieków Kielc 3, 25-516 Kielce, Poland;
| | - Bartosz Szeląg
- Faculty of Environmental, Geomatic and Energy Engineering, Kielce University of Technology, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland;
- Correspondence: (B.S.); (G.Ł.); Tel.: +48-4134-3473 (B.S.); +48-81-538-4322 (G.Ł.)
| | - Joanna Szulżyk-Cieplak
- Faculty of Fundamentals of Technology, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland;
| | - Grzegorz Łagód
- Environmental Engineering Faculty, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland
- Correspondence: (B.S.); (G.Ł.); Tel.: +48-4134-3473 (B.S.); +48-81-538-4322 (G.Ł.)
| |
Collapse
|
6
|
Dastkhoon M, Ghaedi M, Asfaram A, Alipanahpour Dil E. Comparative study of ability of sonochemistry combined ZnS:Ni nanoparticles-loaded activated carbon in reductive of organic pollutants from environmental water samples. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Wakkel M, Khiari B, Zagrouba F. Basic red 2 and methyl violet adsorption by date pits: adsorbent characterization, optimization by RSM and CCD, equilibrium and kinetic studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18942-18960. [PMID: 29790045 DOI: 10.1007/s11356-018-2192-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
The potential of raw date pits as a natural, widely available and low-cost agricultural waste has been studied in order to adsorb cationic dyes from an aqueous solution. Date pits were characterized by FTIR, SEM, BET, and XRD analysis. To optimize removal of two industrial dyes, basic red 2 (BR2) and methyl violet (MV), from aqueous solution using date pits, response surface methodology (RSM) is employed. Tests were carried out as per central composite design (CCD) with four input parameters namely contact time, temperature, initial concentration of adsorbate, and pH. Second-order polynomial model better fits experimental data for BR2 and MV and optimum values were then determined. In the optimum conditions, kinetic study was conducted and the pseudo-second-order model was found the best fitted model compared to pseudo-first-order model. Moreover, it was shown that intraparticle diffusion was not the sole controlling step and could be associated with other transfer resistance. On other hand, equilibrium isotherms were obtained for BR2 and MV and their maximum adsorption capacities were 92 and 136 mg g-1 respectively. Two-parameter isotherm models like Langmuir, Temkin, Freundlich, Dubinin-Radushkevich, and Halsay were investigated to fit equilibrium data. Three error functions of residual root mean square error, chi-square statistic, and average relative error were used to comfort us in the selected models, which were actually Dubinin-Radushkevich and Langmuir for BR2 and Frendlich, Temkin, and Halsay for MV.
Collapse
Affiliation(s)
- Manel Wakkel
- Research Laboratory of Environmental Science and Technologies, Borj Cédria, 2050, Hammam-Lif, Tunisia
| | - Besma Khiari
- Research Laboratory of Environmental Science and Technologies, Borj Cédria, 2050, Hammam-Lif, Tunisia.
| | - Féthi Zagrouba
- Research Laboratory of Environmental Science and Technologies, Borj Cédria, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
8
|
Wakkel M, Khiari B, Zagrouba F. Textile wastewater treatment by agro-industrial waste: Equilibrium modelling, thermodynamics and mass transfer mechanisms of cationic dyes adsorption onto low-cost lignocellulosic adsorbent. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.12.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Karimifard S, Alavi Moghaddam MR. Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:772-797. [PMID: 30021324 DOI: 10.1016/j.scitotenv.2018.05.355] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 05/22/2023]
Abstract
Response surface methodology (RSM) is a powerful tool in designing the experiments and optimizing different environmental processes. However, when it comes to wastewater treatment and specifically dye-containing wastewater, two questions arise; "Is RSM being used correctly?" and "Are all capabilities of RSM being exploited properly?". The current review paper aims to answer these questions by scrutinizing different physicochemical processes that utilized RSM in dye removal. The literature that applied RSM to adsorption, advanced oxidation processes, coagulation/flocculation and electrocoagulation processes were critically reviewed in this paper. The common errors in applying RSM to physicochemical removal of dyes are identified and some suggestions are made for future studies.
Collapse
Affiliation(s)
- Shahab Karimifard
- Department of Civil and Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez St., Tehran 15875-4413, Iran; Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Mohammad Reza Alavi Moghaddam
- Department of Civil and Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez St., Tehran 15875-4413, Iran.
| |
Collapse
|
10
|
Roy U, Sengupta S, Banerjee P, Das P, Bhowal A, Datta S. Assessment on the decolourization of textile dye (Reactive Yellow) using Pseudomonas sp. immobilized on fly ash: Response surface methodology optimization and toxicity evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:185-195. [PMID: 29929074 DOI: 10.1016/j.jenvman.2018.06.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 05/27/2023]
Abstract
This study focuses on the investigation of removal of textile dye (Reactive Yellow) by a combined approach of sorption integrated with biodegradation using low cost adsorbent fly ash immobilized with Pseudomonas sp. To ensure immobilization of bacterial species on treated fly ash, fly ash with immobilized bacterial cells was characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and fluorescence microscopy. Comparative batch studies were carried out using Pseudomonas sp, fly ash and immobilized Pseudomonas sp on flyash and were observed that immobilized Pseudomonas sp on flyash acted as better decolourizing agent. The optimized pH, temperature, and immobilized adsorbent dosage for highest percentage of dye removal were observed to be pH 6, 303 K, 1.2 g/L in all the cases. At optimum condition, the highest percentage of dye removal was found to be 88.51%, 92.62% and 98.72% for sorption (flyash), biodegradation (Pseudomonas sp) and integral approach (Pseudomonas sp on flyash) respectively. Optimization of operating parameters of textile dye decolourization was done by response surface methodology (RSM) using Design Expert 7 software. Phytotoxicity evaluation with Cicer arietinum revealed that seeds exposed to untreated dye effluents showed considerably lower growth, inhibited biochemical, and enzyme parameters with compared to those exposed to treated textile effluents. Thus this immobilized inexpensive technique could be used for removal of synthetic dyes present in textile wastewater.
Collapse
Affiliation(s)
- Uttariya Roy
- Department of Chemical Engineering, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700 032, West Bengal, India
| | - Shubhalakshmi Sengupta
- Department of Chemical Engineering, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700 032, West Bengal, India
| | - Priya Banerjee
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, West Bengal, India
| | - Papita Das
- Department of Chemical Engineering, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700 032, West Bengal, India.
| | - Avijit Bhowal
- Department of Chemical Engineering, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700 032, West Bengal, India
| | - Siddhartha Datta
- Department of Chemical Engineering, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700 032, West Bengal, India
| |
Collapse
|
11
|
Integral approach of sorption coupled with biodegradation for treatment of azo dye using Pseudomonas sp.: batch, toxicity, and artificial neural network. 3 Biotech 2018; 8:192. [PMID: 29576998 DOI: 10.1007/s13205-018-1215-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/14/2018] [Indexed: 10/17/2022] Open
Abstract
The present study investigated the removal of azo dye (crystal violet) by adsorption (using a low-cost adsorbent fly ash), biodegradation (using bacterial species, Pseudomonas sp.), and an integrated approach of sorption coupled with biodegradation (using fly ash immobilized with Pseudomonas sp.) on a comparative scale. To ascertain immobilization of bacteria on fly ash, immobilized bacterial cells were characterized by energy-dispersive X-ray spectroscopy, scanning electron microscopy, Fourier-transform-infrared spectroscopy, and fluorescence microscopy. Batch studies were conducted for optimization of the process parameters for ensuring maximum dye removal. The optimum pH, temperature, and initial dye concentration for the highest percentage of dye removal were found to be pH 7, 37 °C, and 50 mg/L in all the three cases. Under optimized conditions, the highest percentage of dye removal was found to be 89.24, 79.64, and 99.04% for biodegradation, sorption, and integrated approach of sorption and biodegradation, respectively. Finally, phytotoxicity studies carried out with the treated water on Cicer arietinum seeds also carried proved that these processes and the adsorbent did not exert any toxic effects on the seeds. Artificial neural network modeling revealed a close interaction between theoretically predicted and experimentally obtained results and with an error of around 1.1%. Thus, this novel, environmentally sustainable and economically viable technique may be applied for effective removal of crystal violet from industrial wastewater.
Collapse
|
12
|
Pooralhossini J, Ghaedi M, Zanjanchi MA, Asfaram A. Ultrasonically assisted removal of Congo Red, Phloxine B and Fast green FCF in ternary mixture using novel nanocomposite following their simultaneous analysis by derivative spectrophotometry. ULTRASONICS SONOCHEMISTRY 2017; 37:452-463. [PMID: 28427656 DOI: 10.1016/j.ultsonch.2017.01.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 06/07/2023]
Abstract
In this study dependency of simultaneous adsorption of Congo Red (CR), Phloxine B (BP) and Fast green FCF (FG) onto CuS/ZnS nanocomposites loaded on activated carbon (CuS/ZnS-NCs-AC) to pH, adsorbent mass, sonication time and initial dyes concentration were modeled and optimized, while CuS/ZnS-NCs-AC was identified by XRD, FESEM and EDS analysis. CR, PB and FG concentration determination were undertaken by first and second order derivative spectrophotometry in ternary mixture. According to central composite design (CCD) based on desirability function (DF), the best experimental conditions was set as pH 6.0, 0.02g CuS/ZnS-NCs-AC, 5min sonication time, 15mgL-1 for PB and 10mgL-1 for other dyes. Conduction of experiments to above conditions lead to highest dyes removal efficiency of 99.72, 98.8 and 98.17 for CR, PB and FG, respectively. The adsorption data efficiently fitted by Langmuir isotherm model, while the order of maximum adsorption capacity (Qmax) for PB (128.21mgg-1)>CR (88.57mgg-1)>FG (73.40mgg-1) is related to their different structure and charges. Kinetics of process was efficiently explained according to pseudo-second-order kinetic in cooperation of Weber and Morris based on intraparticle diffusion.
Collapse
Affiliation(s)
- Jaleh Pooralhossini
- Department of Chemistry, University of Guilan, University Campus 2, Mellat St., Rasht, Iran
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Mohammad Ali Zanjanchi
- Department of Chemistry, University of Guilan, University Campus 2, Mellat St., Rasht, Iran; Department of Chemistry, Faculty of Science, University of Guilan, Rasht 41335-1914, Iran.
| | - Arash Asfaram
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| |
Collapse
|
13
|
Azzaz AA, Jellali S, Akrout H, Assadi AA, Bousselmi L. Optimization of a cationic dye removal by a chemically modified agriculture by-product using response surface methodology: biomasses characterization and adsorption properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9831-9846. [PMID: 27726078 DOI: 10.1007/s11356-016-7698-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
The present study investigates the alkaline modification of raw orange tree sawdust (ROS) for an optimal removal of methylene blue (MB), as a cationic dye model, from synthetic solutions. The effects of operating parameters, namely, sodium hydroxide (NaOH) concentrations, ROS doses in NaOH solutions, stirring times, and initial MB concentrations on dye removal efficiency, were followed in batch mode. The process optimization was performed through the response surface methodology approach (RSM) by using Minitab17 software. The results showed that the order of importance of the followed parameters was NaOH treatment concentrations > stirring times > initial MB concentrations > ROS doses in NaOH solutions. The optimal experimental conditions ensuring the maximal MB removal efficiency was found for a NaOH treatment concentration of 0.14 M, a stirring time of 1 h, a ROS dose in NaOH solutions of 50 g L-1, and an initial MB concentration of 69.5 mg L-1. Specific analyses of the raw and alkali-treated biomasses, e.g., SEM/EDS and XRD analyses, demonstrated an important modification of the crystalline structure of the wooden material and a significant increase in its surface basic functional groups. Kinetic and isotherm studies of MB removal from synthetic solutions by ROS and the alkali-treated material (ATOS) showed that for both adsorbents, the pseudo-second-order and Langmuir model fitted the best the experimental data, respectively, which indicates that MB removal might be mainly a chemical and a monolayer process. Furthermore, thanks to the chemical modification of the ROS, the MB maximal uptake capacity has increased from about 39.7 to 78.7 mg g-1. On the other hand, due to the competition phenomenon, the coexistence of MB and Zn(II) ions could significantly decrease the MB removal efficiency. A maximal decrease of about 32 % was registered for an initial Zn(II) concentration of 140 mg L-1. Desorption experiments undertaken at natural pH (without adjustment: pH = 6) and with different NaCl concentrations emphasized that the adsorbed MB could be significantly desorbed from both the tested materials, offering their possible reuse as efficient adsorbents. All these results confirmed that NaOH-treated orange tree sawdust could be considered as an efficient, economic, and ecological alternative for the removal of cationic dyes from industrial wastewaters.
Collapse
Affiliation(s)
- Ahmed Amine Azzaz
- Wastewaters and Environment Laboratory, Water Research and Technologies Center, BP 273, 8020, Soliman, Tunisia
- Faculty of Sciences of Bizerte, University of Carthage, 7000, Jarzouna, Tunisia
| | - Salah Jellali
- Wastewaters and Environment Laboratory, Water Research and Technologies Center, BP 273, 8020, Soliman, Tunisia.
| | - Hanene Akrout
- Wastewaters and Environment Laboratory, Water Research and Technologies Center, BP 273, 8020, Soliman, Tunisia
| | - Aymen Amine Assadi
- Laboratory of Chemical Sciences of Rennes Sciences-Chemical and Process Engineering team, MRU 6226 ICSR, ENSCR-11, Allée de Beaulieu, 508307-35708, Rennes, France
| | - Latifa Bousselmi
- Wastewaters and Environment Laboratory, Water Research and Technologies Center, BP 273, 8020, Soliman, Tunisia
| |
Collapse
|
14
|
Asfaram A, Ghaedi M, Hajati S, Goudarzi A, Dil EA. Screening and optimization of highly effective ultrasound-assisted simultaneous adsorption of cationic dyes onto Mn-doped Fe 3O 4-nanoparticle-loaded activated carbon. ULTRASONICS SONOCHEMISTRY 2017; 34:1-12. [PMID: 27773223 DOI: 10.1016/j.ultsonch.2016.05.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/07/2016] [Accepted: 05/08/2016] [Indexed: 05/15/2023]
Abstract
The ultrasound-assisted simultaneous adsorption of brilliant green (BG) and malachite green (MG) onto Mn-doped Fe3O4 nanoparticle-loaded activated carbon (Mn-Fe3O4-NP-AC) as a novel adsorbent was investigated and analyzed using first derivative spectrophotometry. The adsorbent was characterized using FT-IR, FE-SEM, EDX and XRD. Plackett-Burman design was applied to reduce the total number of experiments and to optimize the ultrasound-assisted simultaneous adsorption procedure, where pH, adsorbent mass and sonication time (among six tested variables) were identified as the most significant factors. The effects of significant variables were further evaluated by a central composite design under response surface methodology. The significance of independent variables and their interactions was investigated by means of the analysis of variance (ANOVA) within 95% confidence level together with Pareto chart. Using this statistical tool, the optimized ultrasound-assisted simultaneous removal of basic dyes was obtained at 7.0, 0.02g, 3min for pH, adsorbent mass, and ultrasonication time, respectively. The maximum values of BG and MG uptake under these experimental conditions were found to be 99.50 and 99.00%, respectively. The adsorption process was found to be followed by the Langmuir isotherm and pseudo-second order model using equilibrium and kinetic studies, respectively. According to Langmuir isotherm model, the maximum adsorption capacities of the adsorbent were obtained to be 101.215 and 87.566mgg-1 for MG and BG, respectively. The value of apparent energy of adsorption obtained from non-linear Dubinin-Radushkevich model (4.348 and 4.337kJmol-1 for MG and BG, respectively) suggested the physical adsorption of the dyes. The studies on the well regenerability of the adsorbent in addition to its high adsorption capacity make it promising for such adsorption applications.
Collapse
Affiliation(s)
- Arash Asfaram
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Shaaker Hajati
- Department of Physics, Yasouj University, Yasouj 75918-74831, Iran; Department of Semiconductors, Materials and Energy Research Center, Karaj 3177983634, Iran
| | - Alireza Goudarzi
- Department of Polymer Engineering, Golestan University, Gorgan 49188-88369, Iran
| | | |
Collapse
|
15
|
Banerjee P, Barman SR, Mukhopadhayay A, Das P. Ultrasound assisted mixed azo dye adsorption by chitosan–graphene oxide nanocomposite. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2016.10.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Dhiman N, Markandeya M, Fatima F, Saxsena PN, Roy S, Rout PK, Patnaik S. Predictive modeling and validation of arsenite removal by a one pot synthesized bioceramic buttressed manganese doped iron oxide nanoplatform. RSC Adv 2017. [DOI: 10.1039/c7ra03736h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Arsenite removal by a one pot synthesized bioceramic buttressed manganese doped iron oxide nanoplatform.
Collapse
Affiliation(s)
- Nitesh Dhiman
- Water Analysis Laboratory
- Nanotherapeutics & Nanomaterial Toxicology Group
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR)
- Lucknow-226001
- India
| | - Markandeya Markandeya
- Department of Civil Engineering
- Institute of Engineering & Technology
- Lucknow-226021
- India
- Environmental Monitoring Laboratory
| | - Faimy Fatima
- Water Analysis Laboratory
- Nanotherapeutics & Nanomaterial Toxicology Group
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR)
- Lucknow-226001
- India
| | - Prem N. Saxsena
- Advanced Imaging Facility
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR)
- Lucknow-226001
- India
| | - Somendu Roy
- Analytical Chemistry Division
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR)
- Lucknow-226001
- India
| | - Prashant K. Rout
- Phytochemistry Department
- CSIR-Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
| | - Satyakam Patnaik
- Water Analysis Laboratory
- Nanotherapeutics & Nanomaterial Toxicology Group
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR)
- Lucknow-226001
- India
| |
Collapse
|
17
|
Sharifpour E, Haddadi H, Ghaedi M, Asfaram A, Wang S. Simultaneous and rapid dye removal in the presence of ultrasound waves and a nano structured material: experimental design methodology, equilibrium and kinetics. RSC Adv 2016. [DOI: 10.1039/c6ra13286c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tin sulfide nanoparticles loaded on activated carbon (SnS-AC) were prepared and characterized by FE-SEM, XRD, FT-IR and EDX.
Collapse
Affiliation(s)
- Ebrahim Sharifpour
- Department of Chemistry
- Faculty of Sciences
- Shahrekord University
- Shahrekord
- Iran
| | - Hedayat Haddadi
- Department of Chemistry
- Faculty of Sciences
- Shahrekord University
- Shahrekord
- Iran
| | | | - Arash Asfaram
- Chemistry Department
- Yasouj University
- Yasouj 75918-74831
- Iran
| | - Shaobin Wang
- Department of Chemical Engineering
- Curtin University
- Perth
- Australia
| |
Collapse
|
18
|
Azad FN, Ghaedi M, Asfaram A, Jamshidi A, Hassani G, Goudarzi A, Azqhandi MHA, Ghaedi A. Optimization of the process parameters for the adsorption of ternary dyes by Ni doped FeO(OH)-NWs–AC using response surface methodology and an artificial neural network. RSC Adv 2016. [DOI: 10.1039/c5ra26036a] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study deals with the simultaneous removal of chrysoidine G (CG), rhodamine B (RB) and disulfine blue (DB) by Ni doped ferric oxyhydroxide FeO(OH) nanowires on activated carbon (Ni doped FeO(OH)-NWs–AC).
Collapse
Affiliation(s)
| | | | - Arash Asfaram
- Chemistry Department
- Yasuj University
- Yasuj 75918-74831
- Iran
| | - Arsalan Jamshidi
- Social Determinates of Health Research Center
- Yasuj University of Medical Sciences
- Yasuj
- Iran
- Department of Environmental Health Engineering
| | - Ghasem Hassani
- Department of Environmental Health Engineering
- Faculty of Health
- Ahvaz Jundishapur University of Medical Sciences
- Ahvaz
- Iran
| | | | | | - Abdolmohammad Ghaedi
- Chemistry Department
- Gachsaran Branch
- Islamic Azad University
- Gachsaran 75818-63876
- Iran
| |
Collapse
|