1
|
Bhardwaj L, Kumar D, Singh UP, Joshi CG, Dubey SK. Herbicide application impacted soil microbial community composition and biochemical properties in a flooded rice field. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169911. [PMID: 38185156 DOI: 10.1016/j.scitotenv.2024.169911] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Herbicide application is a common practice in intensive agriculture. However, accumulating herbicide residues in the ecosystem affects important soil attributes. The effect of two herbicides, pendimethalin and pretilachlor, on soil biochemical properties and microbial community composition was studied in a transplanted paddy field. Results reveal a gradual decline in herbicide residue up to 60 days after application. Changes in soil microbiological and biochemical properties (microbial biomass, enzymes, respiration, etc.) showed an inconsistent pattern across the treatments. Quantitative polymerase chain reaction analysis showed the archaeal, bacterial and fungal populations to be of higher order in control soil compared to the treated one. Amplicon sequencing (16S rRNA and ITS genes) exhibited that besides the unclassified genera, ammonia-oxidizing Crenarchaeota and the group represented by Candidatus Nitrososphaera were dominant in both the control and treated samples. Other archaeal genera viz. Methanosarcina and Bathyarchaeia showed a slight decrease in relative abundance of control (0.5 %) compared to the treated soil (0.7 %). Irrespective of treatments, the majority of bacterial genera comprised unclassified and uncultured species, accounting for >64-75 % in the control group and over 78.29 % in the treated samples. Members of Vicinamibacteraceae, Bacillus and Bryobacter were dominant in control samples. Dominant fungal genera belonging to unclassified groups comprised Curvularia, Aspergillus, and Emericellopsis in the control group, whereas Paraphysoderma and Emericellopsis in the herbicide-treated groups. Inconsistent response of soil properties and microbial community composition is evident from the present study, suggesting that the recommended dose of herbicides might not result in any significant change in microbial community composition. The findings of this investigation will help in the formulation of a framework for risk assessment and maintaining sustainable rice cultivation in herbicide- amended soils.
Collapse
Affiliation(s)
- Laliteshwari Bhardwaj
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Dinesh Kumar
- Gujarat Biotechnology Research Centre, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Udai P Singh
- Department of Agronomy, Institute of Agriculture Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
2
|
Rebelo D, Antunes SC, Rodrigues S. The Silent Threat: Exploring the Ecological and Ecotoxicological Impacts of Chlorinated Aniline Derivatives and the Metabolites on the Aquatic Ecosystem. J Xenobiot 2023; 13:604-614. [PMID: 37873815 PMCID: PMC10594489 DOI: 10.3390/jox13040038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
The growing concern over the environmental impacts of industrial chemicals on aquatic ecosystems has prompted increased attention and regulation. Aromatic amines have drawn scrutiny due to their potential to disturb aquatic ecosystems. 4-chloroaniline and 3,4-dichloroaniline are chlorinated derivatives of aniline used as intermediates in the synthesis of pharmaceuticals, dyes, pesticides, cosmetics, and laboratory chemicals. While industrial applications are crucial, these compounds represent significant risks to aquatic environments. This article aims to shed light on aromatic amines' ecological and ecotoxicological impacts on aquatic ecosystems, given as examples 4-chloroaniline and 3,4-dichloroaniline, highlighting the need for stringent regulation and management to safeguard water resources. Moreover, these compounds are not included in the current Watch List of the Water Framework Directive, though there is already some information about aquatic ecotoxicity, which raises some concerns. This paper primarily focuses on the inherent environmental problem related to the proliferation and persistence of aromatic amines, particularly 4-chloroaniline and 3,4-dichloroaniline, in aquatic ecosystems. Although significant research underscores the hazardous effects of these compounds, the urgency of addressing this issue appears to be underestimated. As such, we underscore the necessity of advancing detection and mitigation efforts and implementing improved regulatory measures to safeguard the water bodies against these potential threats.
Collapse
Affiliation(s)
- Daniela Rebelo
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4550-208 Matosinhos, Portugal;
- Department of Biology, Faculty of Sciences of the University of Porto (FCUP), Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Sara C. Antunes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4550-208 Matosinhos, Portugal;
- Department of Biology, Faculty of Sciences of the University of Porto (FCUP), Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Sara Rodrigues
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4550-208 Matosinhos, Portugal;
- Department of Biology, Faculty of Sciences of the University of Porto (FCUP), Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Zhang L, Yao G, Mao Z, Song M, Zhao R, Zhang X, Chen C, Zhang H, Liu Y, Wang G, Li F, Wu X. Experimental and computational approaches to characterize a novel amidase that initiates the biodegradation of the herbicide propanil in Bosea sp. P5. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131155. [PMID: 36893600 DOI: 10.1016/j.jhazmat.2023.131155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The herbicide propanil and its major metabolite 3,4-dichloroaniline (3,4-DCA) are difficult to biodegrade and pose great health and environmental risks. However, studies on the sole or synergistic mineralization of propanil by pure cultured strains are limited. A two-strain consortium (Comamonas sp. SWP-3 and Alicycliphilus sp. PH-34), obtained from a swep-mineralizing enrichment culture that can synergistically mineralize propanil, has been previously reported. Here, another propanil degradation strain, Bosea sp. P5, was successfully isolated from the same enrichment culture. A novel amidase, PsaA, responsible for initial propanil degradation, was identified from strain P5. PsaA shared low sequence identity (24.0-39.7 %) with other biochemically characterized amidases. PsaA exhibited optimal activity at 30 °C and pH 7.5 and had kcat and Km values of 5.7 s-1 and 125 μM, respectively. PsaA could convert the herbicide propanil to 3,4-DCA but exhibited no activity toward other herbicide structural analogs. This catalytic specificity was explained by using propanil and swep as substrates and then analyzed by molecular docking, molecular dynamics simulation and thermodynamic calculations, which revealed that Tyr138 is the key residue that affects the substrate spectrum of PsaA. This is the first propanil amidase with a narrow substrate spectrum identified, providing new insights into the catalytic mechanism of amidase in propanil hydrolysis.
Collapse
Affiliation(s)
- Long Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China; Anhui Bio-breeding Engineering Research Center for Watermelon and Melon, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Gui Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Zhenbo Mao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Man Song
- College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Ruiqi Zhao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Xiaochun Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China; School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Chun Chen
- Institute of Biomedicine, Jinan University, Guangzhou, 510632, PR China
| | - Huijun Zhang
- Anhui Bio-breeding Engineering Research Center for Watermelon and Melon, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Yuan Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Guangli Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Feng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Xiaomin Wu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| |
Collapse
|
4
|
Kontomina E, Garefalaki V, Fylaktakidou KC, Evmorfidou D, Eleftheraki A, Avramidou M, Udoh K, Panopoulou M, Felföldi T, Márialigeti K, Fakis G, Boukouvala S. A taxonomically representative strain collection to explore xenobiotic and secondary metabolism in bacteria. PLoS One 2022; 17:e0271125. [PMID: 35834592 PMCID: PMC9282458 DOI: 10.1371/journal.pone.0271125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/23/2022] [Indexed: 11/20/2022] Open
Abstract
Bacteria employ secondary metabolism to combat competitors, and xenobiotic metabolism to survive their chemical environment. This project has aimed to introduce a bacterial collection enabling comprehensive comparative investigations of those functions. The collection comprises 120 strains (Proteobacteria, Actinobacteria and Firmicutes), and was compiled on the basis of the broad taxonomic range of isolates and their postulated biosynthetic and/or xenobiotic detoxification capabilities. The utility of the collection was demonstrated in two ways: first, by performing 5144 co-cultures, recording inhibition between isolates and employing bioinformatics to predict biosynthetic gene clusters in sequenced genomes of species; second, by screening for xenobiotic sensitivity of isolates against 2-benzoxazolinone and 2-aminophenol. The co-culture medium of Bacillus siamensis D9 and Lysinibacillus sphaericus DSM 28T was further analysed for possible antimicrobial compounds, using liquid chromatography-mass spectrometry (LC-MS), and guided by computational predictions and the literature. Finally, LC-MS analysis demonstrated N-acetylation of 3,4-dichloroaniline (a toxic pesticide residue of concern) by the actinobacterium Tsukamurella paurometabola DSM 20162T which is highly tolerant of the xenobiotic. Microbial collections enable "pipeline" comparative screening of strains: on the one hand, bacterial co-culture is a promising approach for antibiotic discovery; on the other hand, bioremediation is effective in combating pollution, but requires knowledge of microbial xenobiotic metabolism. The presented outcomes are anticipated to pave the way for studies that may identify bacterial strains and/or metabolites of merit in biotechnological applications.
Collapse
Affiliation(s)
- Evanthia Kontomina
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasiliki Garefalaki
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Dorothea Evmorfidou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athina Eleftheraki
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Marina Avramidou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Karen Udoh
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Panopoulou
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary
| | - Károly Márialigeti
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Giannoulis Fakis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Sotiria Boukouvala
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- * E-mail:
| |
Collapse
|
5
|
Liu H, Zhang P, Chen H, Ding N, Ni J. Study on the degradation mechanism of 2-amino-4-acetaminoanisole from wastewater by nano-Fe 3O 4-catalyzed Fenton system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35811-35827. [PMID: 35061180 DOI: 10.1007/s11356-022-18716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
2-Amino-4-acetaminoanisole (AMA) is an intermediate product in the synthesis of many commercial dyes, and its wide application has led to the generation of a series of AMA dye wastewater. Discharge of untreated AMA dyed wastewater could bring environmental concerns. The present study featured H2O2 Fenton system to degrade 2-amino-4-acetaminoanisole from wastewater using nano-Fe3O4 catalyst prepared via the co-precipitation method. Furthermore, the Box-Behnken design (BBD) response surface method was used to investigate the individual effects of Fe3O4 dosage, H2O2 dosage, initial pH, and reaction time on AMA removal, while in the interaction study, the Design-Expert 10.0 software was applied to obtain a quadratic response surface model. Results indicated that the catalytic effect of nano-Fe3O4 showed better degradation performance as compared to FeSO4 Fenton system. The order of the influence of the selected independent variables on the response value is as follows: nano-Fe3O4 dosage > H2O2 dosage > reaction time > pH. As for 3.04 × 105 μg/L of AMA dye wastewater, the optimal reaction conditions considered in this study are 1.70 g/L of nano-Fe3O4 dosage, 53.52 mmol/L of H2O2 dosage, pH 5.14, and 388.97 min as system reaction time. Furthermore, HPLC-MS was employed to analyze the degradation mechanism of AMA and the reaction intermediate products. Possible degradation pathways of AMA by radicals were addressed. Findings of this research provide fundamental theory and guide practical AMA treatment during wastewater treatment.
Collapse
Affiliation(s)
- Hong Liu
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Environmental Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Peng Zhang
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Environmental Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Houwang Chen
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Environmental Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Ning Ding
- Department of Environmental Science and Engineering, Key Laboratory of Cleaner Production and Comprehensive Utilization of Resources, China National Light Industry, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Jing Ni
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Environmental Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| |
Collapse
|
6
|
Alvarado-Gutiérrez ML, Ruiz-Ordaz N, Galíndez-Mayer J, Curiel-Quesada E, Santoyo-Tepole F. Degradation kinetics of carbendazim by Klebsiella oxytoca, Flavobacterium johnsoniae, and Stenotrophomonas maltophilia strains. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28518-28526. [PMID: 31912400 DOI: 10.1007/s11356-019-07069-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
The fungicide carbendazim is an ecotoxic pollutant frequently found in water reservoirs. The ability of microorganisms to remove pollutants found in diverse environments, soil, water, or air is well documented. Although microbial communities have many advantages in bioremediation processes, in many cases, those with the desired capabilities may be slow-growing or have low pollutant degradation rates. In these cases, the manipulation of the microbial community through enrichment with specialized microbial strains showing high specific growth rates and high rates and efficiencies of pollutant degradation is desirable. In this work, bacteria of the genera Klebsiella, Flavobacterium, and Stenotrophomonas, isolated from the biofilm attached to the packed zones of a biofilm reactor, were able to grow individually in selective medium containing carbendazim. In the three bacteria studied, the mheI gene encoding the first enzyme involved in the degradation of the fungicide carbendazim was found. Studying the dynamics of growth and carbendazim degradation of the three bacteria, the effect of co-formulants was also evaluated. The pure compound and a commercial formulation of carbendazim were used as substrates. Finally, the study made it possible to define the biokinetic advantages of these strains for amendment of microbial communities.
Collapse
Affiliation(s)
- María Luisa Alvarado-Gutiérrez
- Escuela Nacional de Ciencias Biológicas, Unidad Profesional Adolfo López Mateos, Instituto Politécnico Nacional, Av. Wilfrido Massieu S/N, Ciudad de México, Mexico.
| | - Nora Ruiz-Ordaz
- Escuela Nacional de Ciencias Biológicas, Unidad Profesional Adolfo López Mateos, Instituto Politécnico Nacional, Av. Wilfrido Massieu S/N, Ciudad de México, Mexico
| | - Juvencio Galíndez-Mayer
- Escuela Nacional de Ciencias Biológicas, Unidad Profesional Adolfo López Mateos, Instituto Politécnico Nacional, Av. Wilfrido Massieu S/N, Ciudad de México, Mexico.
| | - Everardo Curiel-Quesada
- Escuela Nacional de Ciencias Biológicas, Unidad Profesional Lázaro Cárdenas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Ciudad de México, Mexico
| | - Fortunata Santoyo-Tepole
- Escuela Nacional de Ciencias Biológicas, Unidad Profesional Lázaro Cárdenas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Ciudad de México, Mexico
| |
Collapse
|
7
|
Salazar Mercado SA, Quintero Caleño JD, Rojas Suárez JP. Cytogenotoxic effect of propanil using the Lens culinaris Med and Allium cepa L test. CHEMOSPHERE 2020; 249:126193. [PMID: 32086064 DOI: 10.1016/j.chemosphere.2020.126193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Propanil can produce methemoglobinemia, hemolytic anemia, hepatotoxicity, metabolic disorder and nephrotoxicity. It also has a genotoxic effect, although it is not listed as a carcinogen and it continues to be applied excessively throughout the world. Consequently, in this study the cytogenotoxic effect of propanil was evaluated, using apical root cells of Allium cepa and Lens culinaris. In which, L. culinaris seeds and A. cepa bulbs were subjected to 6 treatments with propanil (2, 4, 6, 8, 10 and 12 mg L-1) and to distilled water as control treatment. Subsequently, the root growth was measured every 24 h for 3 days. Next, the mitotic index and cellular anomalies were determined. Whereby, decreased root development was observed in all treatments. Likewise, greater inhibition of mitosis was evidenced in L. culinaris compared to A. cepa. In addition, chromosomal abnormalities, such as nucleus absence, sticky chromosomes in metaphase and binucleated cells, were present in most of the treatments. Thus, the presence of micronuclei and the results of L. culinaris, indicate the high cytogenotoxicity of propanil and the feasibility of this species as bioindicator.
Collapse
Affiliation(s)
- Seir Antonio Salazar Mercado
- Department of Biology, Universidad Francisco de Paula Santander, Avenida Gran Colombia No. 12E-96B Colsag, San José de Cúcuta, Colombia.
| | | | - Jhan Piero Rojas Suárez
- Department of Civil Constructions, Roads, Transportation, Hydraulics and Fluids, Universidad Francisco de Paula Santander, Cúcuta, Colombia.
| |
Collapse
|
8
|
Carboneras MB, Villaseñor J, Fernández-Morales FJ, Rodrigo MA, Cañizares P. Biological treatment of wastewater polluted with an oxyfluorfen-based commercial herbicide. CHEMOSPHERE 2018; 213:244-251. [PMID: 30223129 DOI: 10.1016/j.chemosphere.2018.09.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/24/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
Fluoxil-24 is a commercial herbicide based on oxyfluorfen (a hazardous non-soluble organochlorinated compound) and additional compounds used as solvents. The aim of this work is to study the biotreatability of this commercial herbicide in water through batch experiments performed at different temperatures (15, 20, 25 and 30 °C) and initial concentrations (85, 150, 300 and 500 mg L-1 of oxyfluorfen). Activated sludge from an oil refinery wastewater treatment plant was acclimated and used for biodegradation experiments. Two main mechanisms, volatilization and biodegradation, were observed to be responsible of the herbicide removal. Fluoxil-24 removal efficiencies between approximately 40% and 80% were reached after 70 h, depending on the conditions used, and oxyfluorfen was not completely removed. Regarding the influence of the temperature, thermal inhibition problems appeared at 30 °C, and the volatilization rate of solvents increased, causing oxyfluorfen to become unavailable for microorganisms. An increase of herbicide initial concentration did not clearly affect the herbicide removal efficiency, whereas it negatively affected the biological mechanism. The experimental results were fitted to a mathematical model that included both simultaneous mechanisms of volatilization and Monod biodegradation kinetics. The model was able to predict the experimental results, and the calculated model parameters confirmed the effect of the variables under study.
Collapse
Affiliation(s)
- María Belén Carboneras
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla- La Mancha, 13071, Ciudad Real, Spain.
| | - José Villaseñor
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla- La Mancha, 13071, Ciudad Real, Spain
| | - Francisco Jesús Fernández-Morales
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla- La Mancha, 13071, Ciudad Real, Spain
| | - Manuel Andrés Rodrigo
- Chemical Engineering Department, Faculty of Chemical Sciences and Technology, University of Castilla- La Mancha, 13071, Ciudad Real, Spain
| | - Pablo Cañizares
- Chemical Engineering Department, Faculty of Chemical Sciences and Technology, University of Castilla- La Mancha, 13071, Ciudad Real, Spain
| |
Collapse
|
9
|
Carena L, Proto M, Minella M, Ghigo G, Giovannoli C, Brigante M, Mailhot G, Maurino V, Minero C, Vione D. Evidence of an Important Role of Photochemistry in the Attenuation of the Secondary Contaminant 3,4-Dichloroaniline in Paddy Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6334-6342. [PMID: 29676902 DOI: 10.1021/acs.est.8b00710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The secondary pollutant 3,4-dichloroaniline (DCA) is produced by the biological degradation of several herbicides, including propanil in paddy fields. The enzymatic hydrolysis of propanil yields DCA with almost quantitative yield. DCA undergoes rather fast photodegradation in paddy water, mostly by direct photolysis. An exception might be represented by the cases (rather rare in paddies) of quite high nitrate concentration (around 50 mg of NO3- L-1), when DCA degradation by CO3•- would play a comparable role to that by direct photolysis. The experimentally measured photoreactivity parameters were used as input data for a photochemical model, which predicted a DCA lifetime of 0.5-1 days in sunlit paddy fields in late May, when propanil is usually applied. The model predictions compare remarkably well with the DCA attenuation data reported in field studies, carried out in paddies in temperate regions. Moreover, a consecutive reaction model based on typical biological (propanil) and photochemical (DCA) lifetimes reproduced quite well the time trends of both compounds in paddies, as reported in the literature. These successful comparisons suggest that photodegradation in general, and direct photolysis in particular, may play a key role in DCA attenuation in paddy water.
Collapse
Affiliation(s)
- Luca Carena
- Department of Chemistry , University of Torino , Via Pietro Giuria 5, 7 , 10125 Torino , Italy
| | - Mariagrazia Proto
- Department of Chemistry , University of Torino , Via Pietro Giuria 5, 7 , 10125 Torino , Italy
| | - Marco Minella
- Department of Chemistry , University of Torino , Via Pietro Giuria 5, 7 , 10125 Torino , Italy
| | - Giovanni Ghigo
- Department of Chemistry , University of Torino , Via Pietro Giuria 5, 7 , 10125 Torino , Italy
| | - Cristina Giovannoli
- Department of Chemistry , University of Torino , Via Pietro Giuria 5, 7 , 10125 Torino , Italy
| | - Marcello Brigante
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand , F-63000 Clermont -Ferrand , France
| | - Gilles Mailhot
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand , F-63000 Clermont -Ferrand , France
| | - Valter Maurino
- Department of Chemistry , University of Torino , Via Pietro Giuria 5, 7 , 10125 Torino , Italy
| | - Claudio Minero
- Department of Chemistry , University of Torino , Via Pietro Giuria 5, 7 , 10125 Torino , Italy
| | - Davide Vione
- Department of Chemistry , University of Torino , Via Pietro Giuria 5, 7 , 10125 Torino , Italy
- Centro Interdipartimentale NatRisk , Università Degli Studi Di Torino , Largo Paolo Braccini 2 , 10095 Grugliasco (TO) , Italy
| |
Collapse
|
10
|
González-Hurtado M, Rieumont-Briones J, Castro-González LM, Zumeta-Dube I, Galano A. Combined experimental–theoretical investigation on the interactions of Diuron with a urea–formaldehyde matrix: implications for its use as an “intelligent pesticide”. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Alvarado-Gutiérrez ML, Ruiz-Ordaz N, Galíndez-Mayer J, Santoyo-Tepole F, Curiel-Quesada E, García-Mena J, Ahuatzi-Chacón D. Kinetics of carbendazim degradation in a horizontal tubular biofilm reactor. Bioprocess Biosyst Eng 2017; 40:519-528. [PMID: 28005180 DOI: 10.1007/s00449-016-1717-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/02/2016] [Indexed: 11/29/2022]
Abstract
The fungicide carbendazim is an ecotoxic agent affecting aquatic biota. Due to its suspected hormone-disrupting effects, it is considered a "priority hazard substance" by the Water Framework Directive of the European Commission, and its degradation is of major concern. In this work, a horizontal tubular biofilm reactor (HTBR) operating in plug-flow regime was used to study the kinetics of carbendazim removal by an acclimated microbial consortium. The reactor was operated in steady state continuous culture at eight different carbendazim loading rates. The concentrations of the fungicide were determined at several distances of the HTBR. At the loading rates tested, the highest instantaneous removal rates were observed in the first section of the tubular biofilm reactor. No evidence of inhibition of the catabolic activity of the microbial community was found. Strains of the genera Flectobacillus, Klebsiella, Stenotrophomonas, and Flavobacterium were identified in the biofilm; the last three degrade carbendazim in axenic culture.
Collapse
Affiliation(s)
| | - Nora Ruiz-Ordaz
- Departamento de Ingeniería, Instituto Politécnico Nacional, ENCB, México, Mexico.
| | | | - Fortunata Santoyo-Tepole
- Central de Instrumentación de Espectroscopia, Instituto Politécnico Nacional, ENCB, México, Mexico
| | | | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav, Instituto Politécnico Nacional, México, Mexico
| | | |
Collapse
|
12
|
Carena L, Minella M, Barsotti F, Brigante M, Milan M, Ferrero A, Berto S, Minero C, Vione D. Phototransformation of the Herbicide Propanil in Paddy Field Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2695-2704. [PMID: 28145687 DOI: 10.1021/acs.est.6b05053] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
When irradiated in paddy-field water, propanil (PRP) undergoes photodegradation by direct photolysis, by reactions with •OH and CO3•-, and possibly also with the triplet states of chromophoric dissolved organic matter. Irradiation also inhibits the nonphotochemical (probably biological) degradation of PRP. The dark- and light-induced pathways can be easily distinguished because 3,4-dichloroaniline (34DCA, a transformation intermediate of considerable environmental concern) is produced with almost 100% yield in the dark but not at all through photochemical pathways. This issue allows an easy assessment of the dark process(es) under irradiation. In the natural environment, we expect PRP photodegradation to be important only in the presence of elevated nitrate and/or nitrite levels, e.g., [NO3-] approaching 1 mmol L-1 (corresponding to approximately 60 mg L-1). Under these circumstances, •OH and CO3•- would play a major role in PRP phototransformation. Because flooded paddy fields are efficient denitrification bioreactors that can achieve decontamination of nitrate-rich water used for irrigation, irrigation with such water would both enhance PRP photodegradation and divert PRP dissipation processes away from the production of 34DCA, at least in the daylight hours.
Collapse
Affiliation(s)
- Luca Carena
- Dipartimento di Chimica, Università di Torino , Via Pietro Giuria 5, 10125 Torino, Italy
| | - Marco Minella
- Dipartimento di Chimica, Università di Torino , Via Pietro Giuria 5, 10125 Torino, Italy
| | - Francesco Barsotti
- Dipartimento di Chimica, Università di Torino , Via Pietro Giuria 5, 10125 Torino, Italy
| | - Marcello Brigante
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, & CNRS, UMR 6296, ICCF, BP 80026 , F-63177 Aubière, France
| | - Marco Milan
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino , Largo Paolo Braccini 2, 10095 Grugliasco (TO), ITALY
| | - Aldo Ferrero
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino , Largo Paolo Braccini 2, 10095 Grugliasco (TO), ITALY
| | - Silvia Berto
- Dipartimento di Chimica, Università di Torino , Via Pietro Giuria 5, 10125 Torino, Italy
| | - Claudio Minero
- Dipartimento di Chimica, Università di Torino , Via Pietro Giuria 5, 10125 Torino, Italy
| | - Davide Vione
- Dipartimento di Chimica, Università di Torino , Via Pietro Giuria 5, 10125 Torino, Italy
- Università di Torino , Centro Interdipartimentale NatRisk, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| |
Collapse
|
13
|
Armstrong DL, Rice CP, Ramirez M, Torrents A. Influence of thermal hydrolysis-anaerobic digestion treatment of wastewater solids on concentrations of triclosan, triclocarban, and their transformation products in biosolids. CHEMOSPHERE 2017; 171:609-616. [PMID: 28056447 DOI: 10.1016/j.chemosphere.2016.12.122] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 06/06/2023]
Abstract
The growing concern worldwide regarding the presence of emerging contaminants in biosolids calls for a better understanding of how different treatment technologies at water resource recovery facilities (WRRFs) can influence concentrations prior to biosolids land application. This study focuses on the influence of solids treatment via the Cambi Thermal Hydrolysis Process™ in conjunction with anaerobic digestion (TH-AD) on concentrations of triclosan (TCS), triclocarban (TCC), and their transformation products in biosolids and sludges. Concentrations of the target analytes in biosolids from the TH-AD process (Class A), sludges from the individual TH-AD treatment steps, and limed biosolids (Class B) from the same WRRF were compared. TCC concentrations were significantly lower in Class A biosolids than those in the Class B product - a removal that occurred during thermal hydrolysis. Concentrations of TCS, methyl triclosan, and 2,4-dichlorophenol, conversely, increased during anaerobic digestion, leading to significantly higher concentrations of these compounds in Class A biosolids when compared to Class B biosolids. Implementation of the TH-AD process had mixed effect on contaminant concentrations.
Collapse
Affiliation(s)
- Dana L Armstrong
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Clifford P Rice
- Sustainable Agricultural Systems Laboratory, ARS-USDA, Beltsville, MD, USA
| | - Mark Ramirez
- DCWater, District of Columbia Water and Sewer Authority, Washington, DC, USA
| | - Alba Torrents
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
14
|
Villaverde J, Rubio-Bellido M, Merchán F, Morillo E. Bioremediation of diuron contaminated soils by a novel degrading microbial consortium. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 188:379-386. [PMID: 28011373 DOI: 10.1016/j.jenvman.2016.12.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 06/06/2023]
Abstract
Diuron is a biologically active pollutant present in soil, water and sediments. It is persistent in soil, water and groundwater and slightly toxic to mammals and birds as well as moderately toxic to aquatic invertebrates. Its principal product of biodegradation, 3,4-dichloroaniline, exhibits a higher toxicity than diuron and is also persistent in the environment. On this basis, the objective of the study was to determine the potential capacity of a proposed novel diuron-degrading microbial consortium (DMC) for achieving not only diuron degradation, but its mineralisation both in solution as well as in soils with different properties. The consortium was tested in a soil solution where diuron was the only carbon source, and more than 98.8% of the diuron initially added was mineralised after only a few days. The consortium was composed of three diuron-degrading strains, Arthrobacter sulfonivorans, Variovorax soli and Advenella sp. JRO, the latter had been isolated in our laboratory from a highly contaminated industrial site. This work shows for the first time the potential capacity of a member of the genus Advenella to remediate pesticide-contaminated soils. However, neither of the three strains separately achieved mineralisation (ring-14C) of diuron in a mineral medium (MSM) with a trace nutrient solution (NS); combined in pairs, they mineralised 40% of diuron in solution, but the most relevant result was obtained in the presence of the three-member consortium, where complete diuron mineralisation was achieved after only a few days. In the presence of the investigated soils in suspension, the capacity of the consortium to mineralise diuron was evaluated, achieving mineralisation of a wide range of herbicides from 22.9 to 69.0%.
Collapse
Affiliation(s)
- J Villaverde
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Spain.
| | - M Rubio-Bellido
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Spain
| | - F Merchán
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Spain
| | - E Morillo
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Spain
| |
Collapse
|
15
|
Liang C, Lan Z, Zhang X, Liu Y. Mechanism for the primary transformation of acetaminophen in a soil/water system. WATER RESEARCH 2016; 98:215-24. [PMID: 27107139 DOI: 10.1016/j.watres.2016.04.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 05/25/2023]
Abstract
The transformation of acetaminophen (APAP) in a soil/water system was systematically investigated by a combination of kinetic studies and a quantitative analysis of the reaction intermediates. Biotransformation was the predominant pathway for the elimination of APAP, whereas hydrolysis or other chemical transformation, and adsorption processes made almost no contribution to the transformation under a dark incubation. Bacillus aryabhattai strain 1-Sj-5-2-5-M, Klebsiella pneumoniae strain S001, and Bacillus subtilis strain HJ5 were the main bacteria identified in the biotransformation of APAP. The soil-to-water ratio and soil preincubation were able to alter the transformation kinetic pattern. Light irradiation promoted the overall transformation kinetics through enhanced biotransformation and extra photosensitized chemical reactions. The transformation pathways were strongly dependent on the initial concentration of APAP. The main primary transformation products were APAP oligomers and p-aminophenol, with the initial addition of 26.5 and 530 μM APAP, respectively. APAP oligomers accounted for more than 95% of transformed APAP, indicating that almost no bound residues were generated through the transformation of APAP in the soil/water system. The potential environmental risks of APAP could increase following the transformation of APAP in the soil/water system because of the higher toxicity of the transformation intermediates.
Collapse
Affiliation(s)
- Chuanzhou Liang
- School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, PR China
| | - Zhonghui Lan
- School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, PR China
| | - Xu Zhang
- School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, PR China.
| | - Yingbao Liu
- College of Life Science, Yangtze University, Jingzhou, 434025, PR China.
| |
Collapse
|