1
|
Hu J, Zeng L, Wang T, Yi M, Song J. Prenatal diagnosis and pregnancy outcomes in fetuses with vertebral abnormalities. J Matern Fetal Neonatal Med 2025; 38:2468000. [PMID: 39978942 DOI: 10.1080/14767058.2025.2468000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
OBJECTIVE To investigate the genetic risk and pregnancy outcomes of fetuses who had the sonographic diagnosis of vertebral abnormalities (VA). METHODS Fifty-two fetuses with sonographically detected VA (excluding neural tube defects) were included in the study. Data on prenatal ultrasound scan, prenatal genetic testing by amniocentesis, and pregnancy outcomes were collected and reviewed. RESULTS Four types of VA were identified among 52 fetuses: butterfly vertebrae (26.9%, 14/52), hemivertebrae (59.6%, 31/52), hemivertebrae combined with butterfly vertebrae (9.6%, 5/52), and block vertebrae (3.9%, 2/52). Of the 52 fetuses, 33 presented VA as the sole sonographic anomaly, while the remaining 19 had associated anomalies. The positive rate of prenatal diagnosis for fetuses with VA was 19.2% (10/52). Chromosomal analysis, including karyotyping and chromosomal microarray analysis (CMA), detected one case of mosaic trisomy 9 and six cases of (likely) pathogenic copy number variants (CNVs). Whole exome sequencing (WES) identified four likely pathogenic variants in three cases with negative CMA results, specifically c.5110-1G > A in FLNB, c.8366G > A in KMT2D, and c.1275_1283dup as well as c.870 + 2T > C in DLL3. Among the 10 cases with diagnostic genetic testing results, seven fetuses exhibited isolated VA. There was no significant difference in the diagnostic rates between the isolated VA group (21.2%, 7/33) and the non-isolated VA group (15.8%, 3/19) (odds ratio [OR] 0.696, 95% confidence interval [CI] 0.157-3.087, p = 0.910). However, the live birth rate was significantly higher in the isolated VA group (71.9%, 23/32) compared to the non-isolated VA group (38.9%, 7/18) (OR 4.016, 95% CI 1.184-13.622, p = 0.022). Among the 30 live birth cases, two underwent spinal surgery and another two were identified with additional abnormalities. Following appropriate interventions, no apparent abnormalities were observed in the growth and development of 30 live birth cases. CONCLUSION Invasive prenatal diagnosis is recommended for all fetuses diagnosed with VA, regardless of whether associated anomalies are present. WES can enhance the diagnostic yield for fetuses with negative CMA results. Fetuses with isolated VA can have favorable pregnancy outcomes when genetic testing results are negative. However, long-term follow-up remains necessary for the assessment of the prognosis of these fetuses.
Collapse
Affiliation(s)
- Jian Hu
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei Province, China
| | - Ling Zeng
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei Province, China
| | - Ting Wang
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei Province, China
| | - Meiqi Yi
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei Province, China
| | - Jieping Song
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Li Y, Yang Y, Wang X. Identification, annotation and toxicity estimation of organic pollutants in human serum via non-target analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125577. [PMID: 39719210 DOI: 10.1016/j.envpol.2024.125577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/14/2024] [Accepted: 12/21/2024] [Indexed: 12/26/2024]
Abstract
Environmental organic pollution causes a threat to the ecological environment, constrains social development and can also potentially harm human health. We applied non-target analysis to screen organic pollutants from the serum of 89 individuals, identifying 67 pollutants in the categories of industrial intermediates, plasticizers, surfactants, pharmaceuticals, pesticides, and exogenous pollutant metabolites. The detection rate of chemicals for industrial use (50.3%; 95% CI: 39.7, 60.8) was higher, reflecting the environmental exposure characteristics of the surrounding functional areas. In addition, 1168 potential pollutant features were annotated to 10 superclasses. Exposure levels of identified pollutants were semi-quantified by predicting response factors via machine learning model. Highly exposed pollutants involved various categories, especially pharmaceuticals due to their property of being easily absorbed by human body cross biological barriers. Toxicity of developmental toxicity, bioconcentration, mutagenicity and oral rat median lethal dose (LD50) were predicted with the occurrence rates of 62.7%, 10.4%, 11.9% and 11.9% of the identified pollutants respectively. 4-[3-(Trifluoromethyl)benzyl]piperidine (industrial intermediate), risperidone (pharmaceutical), and aminocarb (insecticide) were predicted to have multiple toxic effects, which deserved attention and further hazard assessment. This study provides a comprehensive pattern of human exposure to organic pollutants, contributing to evaluate the health risks caused by pollutants to the population, thus providing data support for the monitoring and management of pollutants.
Collapse
Affiliation(s)
- Yuqian Li
- School of Environment and Geography, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Yajing Yang
- Qingdao Municipal Hospital, Qingdao, 266011, People's Republic of China
| | - Xuebing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
3
|
Heiskanen S, Helenius I, Syvänen J, Kemppainen T, Löyttyniemi E, Ahonen M, Gissler M, Raitio A. Maternal risk factors for congenital vertebral formation and mixed defects: A population-based case-control study. J Child Orthop 2024; 18:340-345. [PMID: 38831858 PMCID: PMC11144371 DOI: 10.1177/18632521241235027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/09/2023] [Indexed: 06/05/2024] Open
Abstract
Background The etiology and risk factors of congenital vertebral anomalies are mainly unclear in isolated cases. Also, there are no reports on the risk factors for different subgroups of vertebral anomalies. Therefore, we assessed and identified potential maternal risk factors for these anomalies and hypothesized that diabetes, other chronic diseases, smoking, obesity, and medication in early pregnancy would increase the risk of congenital vertebral anomalies. Methods All cases with congenital vertebral anomalies were identified in the Finnish Register of Congenital Malformations from 1997 to 2016 for this nationwide register-based case-control study. Five matched controls without vertebral malformations were randomly selected. Analyzed maternal risk factors included maternal age, body mass index, parity, smoking, history of miscarriages, chronic diseases, and prescription drug purchases in early pregnancy. Results The register search identified 256 cases with congenital vertebral malformations. After excluding 66 syndromic cases, 190 non-syndromic malformations (74 formation defects, 4 segmentation defects, and 112 mixed anomalies) were included in the study. Maternal smoking was a significant risk factor for formation defects (adjusted odds ratio 2.33, 95% confidence interval 1.21-4.47). Also, pregestational diabetes (adjusted odds ratio 8.53, 95% confidence interval 2.33-31.20) and rheumatoid arthritis (adjusted odds ratio 13.19, 95% confidence interval 1.31-132.95) were associated with mixed vertebral anomalies. Conclusion Maternal pregestational diabetes and rheumatoid arthritis were associated with an increased risk of mixed vertebral anomalies. Maternal smoking increases the risk of formation defects and represents an avoidable risk factor for congenital scoliosis. Level of evidence III.
Collapse
Affiliation(s)
- Susanna Heiskanen
- Department of Paediatric Surgery and Orthopaedics, University of Turku and Turku University Hospital, Turku, Finland
| | - Ilkka Helenius
- Department of Orthopaedics and Traumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Syvänen
- Department of Paediatric Surgery and Orthopaedics, University of Turku and Turku University Hospital, Turku, Finland
| | - Teemu Kemppainen
- Department of Biostatistics, University of Turku and Turku University Hospital, Turku, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, University of Turku and Turku University Hospital, Turku, Finland
| | - Matti Ahonen
- Department of Paediatric Orthopaedics, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mika Gissler
- Knowledge Brokers, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Academic Primary Health Care Centre, Region Stockholm, Stockholm, Sweden
| | - Arimatias Raitio
- Department of Paediatric Surgery and Orthopaedics, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
4
|
Feng X, Ye Y, Zhang J, Zhang Y, Zhao S, Mak JCW, Otomo N, Zhao Z, Niu Y, Yonezawa Y, Li G, Lin M, Li X, Cheung PWH, Xu K, Takeda K, Wang S, Xie J, Kotani T, Choi VNT, Song YQ, Yang Y, Luk KDK, Lee KS, Li Z, Li PS, Leung CYH, Lin X, Wang X, Qiu G, Watanabe K, Wu Z, Posey JE, Ikegawa S, Lupski JR, Cheung JPY, Zhang TJ, Gao B, Wu N. Core planar cell polarity genes VANGL1 and VANGL2 in predisposition to congenital vertebral malformations. Proc Natl Acad Sci U S A 2024; 121:e2310283121. [PMID: 38669183 PMCID: PMC11067467 DOI: 10.1073/pnas.2310283121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
Congenital scoliosis (CS), affecting approximately 0.5 to 1 in 1,000 live births, is commonly caused by congenital vertebral malformations (CVMs) arising from aberrant somitogenesis or somite differentiation. While Wnt/ß-catenin signaling has been implicated in somite development, the function of Wnt/planar cell polarity (Wnt/PCP) signaling in this process remains unclear. Here, we investigated the role of Vangl1 and Vangl2 in vertebral development and found that their deletion causes vertebral anomalies resembling human CVMs. Analysis of exome sequencing data from multiethnic CS patients revealed a number of rare and deleterious variants in VANGL1 and VANGL2, many of which exhibited loss-of-function and dominant-negative effects. Zebrafish models confirmed the pathogenicity of these variants. Furthermore, we found that Vangl1 knock-in (p.R258H) mice exhibited vertebral malformations in a Vangl gene dose- and environment-dependent manner. Our findings highlight critical roles for PCP signaling in vertebral development and predisposition to CVMs in CS patients, providing insights into the molecular mechanisms underlying this disorder.
Collapse
Affiliation(s)
- Xin Feng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yongyu Ye
- Department of Orthopedic Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou510080, China
| | - Jianan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yuanqiang Zhang
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan250012, China
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Judith C. W. Mak
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nao Otomo
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - Zhengye Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Yoshiro Yonezawa
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - Guozhuang Li
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Mao Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Prudence Wing Hang Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kexin Xu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Kazuki Takeda
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - Shengru Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Junjie Xie
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Toshiaki Kotani
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
| | - Vanessa N. T. Choi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - You-Qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen518009, China
| | - Yang Yang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Keith Dip Kei Luk
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kin Shing Lee
- Center for Comparative Medicine Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ziquan Li
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Pik Shan Li
- Center for Comparative Medicine Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Connie Y. H. Leung
- Center for Comparative Medicine Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaochen Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaolu Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | | | - Kota Watanabe
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
| | | | - Zhihong Wu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston77030, TX
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston77030, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston77030, TX
- Texas Children’s Hospital, Houston77030, TX
- Department of Pediatrics, Baylor College of Medicine, Houston77030, TX
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518009, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Bo Gao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518009, China
- Centre for Translational Stem Cell Biology, Hong Kong Special Administrative Region, China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| |
Collapse
|
5
|
Frasuńska J, Pollak A, Turczyn P, Kutkowska-Kaźmierczak A, Pepłowski J, Płoski R, Tarnacka B. A Study of Polish Family with Scoliosis and Limb Contractures Expands the MYH3 Disease Spectrum. Genes (Basel) 2024; 15:125. [PMID: 38275606 PMCID: PMC10815230 DOI: 10.3390/genes15010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/31/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
A disease associated with malfunction of the MYH3 gene is characterised by scoliosis, contractures of the V fingers, knees and elbows, dysplasia of the calf muscles, foot deformity and limb length asymmetry. The aim of this study was to identify the cause of musculoskeletal deformities in a three-generation Polish family by exome sequencing. The segregation of the newly described c.866A>C variant of the MYH3 gene in the family indicates an autosomal dominant model of inheritance. The detected MYH3 variant segregates the disease within the family. The presented results expand the MYH3 disease spectrum and emphasize the clinical diagnostic challenge in syndromes harbouring congenital spine defects and joint contractures.
Collapse
Affiliation(s)
- Justyna Frasuńska
- Department of Rehabilitation, Medical University of Warsaw, 02-091 Warsaw, Poland; (J.F.); (B.T.)
| | - Agnieszka Pollak
- Department of Medical Genetics, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Paweł Turczyn
- Clinic of Early Arthritis, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| | | | - Jakub Pepłowski
- The Rare Diseases Laboratory, Laboratory of Genetics, University Center for Laboratory Medicine, University Clinical Centre of the Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Beata Tarnacka
- Department of Rehabilitation, Medical University of Warsaw, 02-091 Warsaw, Poland; (J.F.); (B.T.)
| |
Collapse
|
6
|
Sun D, Ding Z, Hai Y, Cheng Y. Advances in epigenetic research of adolescent idiopathic scoliosis and congenital scoliosis. Front Genet 2023; 14:1211376. [PMID: 37564871 PMCID: PMC10411889 DOI: 10.3389/fgene.2023.1211376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/30/2023] [Indexed: 08/12/2023] Open
Abstract
Scoliosis is a three-dimensional structural deformity of the spine; more than 80% of scoliosis has no specific pathogenesis but is understood to be closely related to genetic, hormonal, and environmental factors. In recent years, the epigenetic alterations observed in scoliosis have been analyzed in numerous studies to determine the pathogenesis and progression of this condition, however, there is currently no comprehensive review of the epigenetic factors to date. We searched PubMed, Embase, and Web of Science databases for relative studies without language and date restrictions in March 2023. Twenty-five studies were included in this review and analyzed from the four main aspects of epigenetic alteration: DNA methylation, non-coding RNAs, histone modifications, and chromatin remodeling. The relationship between DNA methylation, non-coding RNAs, and scoliosis was considerably reported in the literature, and the corresponding related signaling pathways and novel biomarkers observed in scoliosis provide insights into innovative prevention and treatment strategies. However, the role of histone modifications is rarely reported in scoliosis, and few studies have investigated the relationship between scoliosis and chromatin remodeling. Therefore, these related fields need to be further explored to elucidate the overall effects of epigenetics in scoliosis.
Collapse
Affiliation(s)
| | | | - Yong Hai
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | | |
Collapse
|
7
|
Raitio A, Heiskanen S, Syvänen J, Leinonen MK, Kemppainen T, Löyttyniemi E, Ahonen M, Gissler M, Helenius I. Maternal Risk Factors for Congenital Vertebral Anomalies: A Population-Based Study. J Bone Joint Surg Am 2023; 105:1087-1092. [PMID: 37216430 DOI: 10.2106/jbjs.22.01370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
BACKGROUND The spectrum of congenital vertebral defects varies from benign lesions to severe, life-threatening conditions. The etiology and maternal risk factors remain mainly unclear in isolated cases. Hence, we aimed to assess and identify potential maternal risk factors for these anomalies. Based on previous studies, we hypothesized that maternal diabetes, smoking, advanced maternal age, obesity, chronic diseases, and medication used during the first trimester of pregnancy might increase the risk of congenital vertebral malformations. METHODS We performed a nationwide register-based case-control study. All cases with vertebral anomalies (including live births, stillbirths, and terminations for fetal anomaly) were identified in the Finnish Register of Congenital Malformations from 1997 to 2016. Five matched controls from the same geographic region were randomly selected for each case. Analyzed maternal risk factors included age, body mass index (BMI), parity, smoking, history of miscarriages, chronic diseases, and prescription drugs dispensed during the first trimester of pregnancy. RESULTS In total, 256 cases with diagnosed congenital vertebral anomalies were identified. After excluding 66 malformations associated with known syndromes, 190 nonsyndromic malformation cases were included. These were compared with 950 matched controls. Maternal pregestational diabetes was a significant risk factor for congenital vertebral anomalies (adjusted odds ratio [OR], 7.30 [95% confidence interval (CI), 2.53 to 21.09). Also, rheumatoid arthritis (adjusted OR, 22.91 [95% CI, 2.67 to 196.40]), estrogens (adjusted OR, 5.30 [95% CI, 1.57 to 17.8]), and heparins (adjusted OR, 8.94 [95% CI, 1.38 to 57.9]) were associated with elevated risk. In a sensitivity analysis using imputation, maternal smoking was also significantly associated with an elevated risk (adjusted OR, 1.57 [95% CI, 1.05 to 2.34]). CONCLUSIONS Maternal pregestational diabetes and rheumatoid arthritis increased the risk of congenital vertebral anomalies. Also, estrogens and heparins, both of which are frequently used in assisted reproductive technologies, were associated with an increased risk. Sensitivity analysis suggested an increased risk of vertebral anomalies with maternal smoking, warranting further studies. LEVEL OF EVIDENCE Prognostic Level III . See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Arimatias Raitio
- Department of Paediatric Surgery and Orthopaedics, Turku University Hospital, University of Turku, Turku, Finland
| | - Susanna Heiskanen
- Department of Paediatric Surgery and Orthopaedics, Turku University Hospital, University of Turku, Turku, Finland
| | - Johanna Syvänen
- Department of Paediatric Surgery and Orthopaedics, Turku University Hospital, University of Turku, Turku, Finland
| | - Maarit K Leinonen
- Knowledge Brokers, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Teemu Kemppainen
- Department of Biostatistics, Turku University Hospital, University of Turku, Turku, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, Turku University Hospital, University of Turku, Turku, Finland
| | - Matti Ahonen
- Department of Paediatric Orthopaedics, New Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Mika Gissler
- Knowledge Brokers, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Academic Primary Health Care Centre, Region Stockholm, Stockholm, Sweden
| | - Ilkka Helenius
- Department of Orthopaedics and Traumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
8
|
Cross-sectional analysis of associated anomalies and vertebral anomaly location in 1289 surgical congenital scoliosis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:3577-3584. [PMID: 34235574 DOI: 10.1007/s00586-021-06898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/28/2021] [Accepted: 06/08/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE This study systematically analyzed and assessed the interrelationships among vertebral anomaly location, congenital scoliosis (CS) type and associated abnormality prevalence. METHODS We retrospectively extracted medical records of 1289 CS inpatients surgically treated in our institute from January 2010-December 2019. All patients underwent spinal X-ray, CT, MRI, echocardiogram, urogenital ultrasound and systemic physical examination. We analyzed information on demographics, CS type, associated anomalies and vertebral anomaly location. RESULTS Cervical, thoracic and lumbar vertebral anomalies were found in 5.7%, 78.1% and 33.6% of patients, respectively. 82.7% had one region involved. 59.5% with cervical malformations had mixed defects and 61.1% with lumbar malformations exhibited failure of formation. The musculoskeletal defect prevalence was 28.4%, 19.1% and 9.0% in patients with cervical, thoracic and lumbar anomalies. The intraspinal defect prevalence was 33.4% and 20.7% for thoracic and lumbar anomalies. 86.5% of patients with cervical anomalies had more than one region involved, while 78.1% and 62.2% with thoracic and lumbar anomalies, respectively, had only one region involved. CONCLUSIONS Cervical malformations had higher prevalence of mixed defects, musculoskeletal and intraspinal defects and multi-region involved. Thoracic malformations had higher prevalence of intraspinal and musculoskeletal defects and more involvement of only one vertebral region. Lumbar vertebral malformation patients had much lower prevalence of intraspinal and musculoskeletal defects and more involvement of only one vertebral region. Cervical malformation was a risk factor for more associated anomalies and more severe vertebral anomalies, which deserves more attention from surgeons in outpatient clinic.
Collapse
|
9
|
Lin G, Chai X, Wang S, Yang Y, Shen J, Zhang J. Cross-sectional analysis and trend of vertebral and associated anomalies in Chinese congenital scoliosis population: a retrospective study of one thousand, two hundred and eighty nine surgical cases from 2010 to 2019. INTERNATIONAL ORTHOPAEDICS 2021; 45:2049-2059. [PMID: 34059967 DOI: 10.1007/s00264-021-05061-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/26/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The objective of this article is to report associated anomaly incidences of a large CS cohort and analyze interrelationships among vertebral anomaly types and associated abnormalities. METHODS We retrospectively searched and extracted medical records of 1289 CS inpatients surgically treated in our institute from January 2010 to December 2019. All patients have taken spine X-ray, CT, MRI, echocardiogram, urogenital ultrasound, and systemic physical examination. We analyzed information on demographics, CS types, and associated anomalies. RESULTS CS type was found to be 49.1% for failure of formation (FF), 19.5% for failure of segmentation (FS), and 31.4% for mixed defects (MD). Intraspinal defects were found in 29.4% patients (16.0% for FF, 45.4% for FS, 40.5% for MD), cardiac in 13.7% (12.3% for FF, 14.3% for FS, 15.6% for MD), genitourinary in 5.8% (4.1% for FF, 6.0% for FS, 8.4% for MD), gastrointestinal in 3.6% (4.7% for FF, 1.6% for FS, 3.0% for MD), and musculoskeletal in 16.4% (10.3% for FF, 19.9% for FS, 23.7% for MD). The intraspinal and musculoskeletal defect incidences were significantly higher in patients with failure of segmentation and mixed defects. We also observed a decreasing trend for intraspinal and musculoskeletal defect incidences as well as a tendency for more failure of formation and less failure of segmentation from 2010 to 2019. CONCLUSIONS The intraspinal and musculoskeletal defect incidences were higher in patients with failure of segmentation and mixed defects. Strong interrelationships were found between intraspinal and musculoskeletal defects and among cardiovascular, genitourinary, and gastrointestinal defects. From 2010 to 2019, the proportion of patients with failure of formation increased significantly, causing a decrease in the intraspinal and musculoskeletal defect incidences over time. Female sex, failure of segmentation, and mixed defects could be considered risk factors for more associated anomalies in CS individuals, which would help surgeons in medical management and prenatal consultation.
Collapse
Affiliation(s)
- Guanfeng Lin
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH) Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), 1st Shuaifuyuan Hutong, Beijing, 100730, People's Republic of China
| | - Xiran Chai
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH) Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), 1st Shuaifuyuan Hutong, Beijing, 100730, People's Republic of China
| | - Shengru Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH) Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), 1st Shuaifuyuan Hutong, Beijing, 100730, People's Republic of China
| | - Yang Yang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH) Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), 1st Shuaifuyuan Hutong, Beijing, 100730, People's Republic of China
| | - Jianxiong Shen
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH) Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), 1st Shuaifuyuan Hutong, Beijing, 100730, People's Republic of China
| | - Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH) Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), 1st Shuaifuyuan Hutong, Beijing, 100730, People's Republic of China.
| |
Collapse
|
10
|
|
11
|
Li Z, Li X, Shen J, Zhang L, Chan MTV, Wu WKK. Emerging roles of non-coding RNAs in scoliosis. Cell Prolif 2019; 53:e12736. [PMID: 31828859 PMCID: PMC7046479 DOI: 10.1111/cpr.12736] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
Scoliosis, a complex three‐dimensional deformity of the spine with the Cobb angle (a measure of the spinal lateral curvature) >10 degree, encompasses a spectrum of pathologies, including congenital, idiopathic, syndromic and neuromuscular aetiologies. The pathogenesis is multifactorial involving both environmental and genetic factors but the exact cellular and molecular mechanisms of disease development remain largely unknown. Emerging evidence showed that non‐coding RNAs (ncRNAs), namely microRNAs, long ncRNAs and circular RNAs, are deregulated in many orthopaedic diseases, including scoliosis. Importantly, these deregulated ncRNAs functionally participate in the initiation and progression of scoliosis. Here, we review recent progress in ncRNA research on scoliosis.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingye Li
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, Beijing, China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory of Digestive Diseases, Centre for Gut Microbiota Research, Institute of Digestive Diseases and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
12
|
Li Z, Ma J, Li X, Chan MTV, Wu WKK, Wu Z, Shen J. Aberrantly expressed long non-coding RNAs in air pollution-induced congenital defects. J Cell Mol Med 2019; 23:7717-7725. [PMID: 31557384 PMCID: PMC6815773 DOI: 10.1111/jcmm.14645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/07/2019] [Accepted: 08/18/2019] [Indexed: 12/20/2022] Open
Abstract
Air pollution has been a serious public health issue over the past few decades particularly in developing countries. Air pollution exposure during pregnancy poses potential threat to offspring as the deleterious substances might pass through placenta to alter foetal development. A growing number of studies have demonstrated that long non-coding RNAs (lncRNAs) participate in the development of many diseases, including congenital defects. Here, we used RNA sequencing to identify differentially expressed lncRNAs in air pollution-exposed rat embryos compared with control group. Our data suggested that 554 lncRNAs (216 up-regulated and 338 down-regulated) were significantly differentially expressed in the air pollution-exposed embryos. Moreover, potential cellular functions of these deregulated lncRNAs were predicted via KEGG signal pathway/GO enrichment analyses, which suggested the possible involvements of neurological process, sensory perception of smell and the G-protein signalling pathway. Furthermore, potential functional network of deregulated lncRNAs and their correlated mRNAs in the development of congenital spinal abnormality was established. Our data suggested that lncRNAs may play a vital role in the pathophysiology of air pollution-exposed congenital spinal malformation.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jianqing Ma
- Department of Orthopedic SurgeryThe General Hospital of Xingtai Mining Industry Bloc.Orthopaedic Hospital of XingtaiXingtaiChina
| | - Xingye Li
- Department of Orthopedic SurgeryBeijing Jishuitan HospitalFourth Clinical College of Peking UniversityJishuitan Orthopaedic College of Tsinghua UniversityBeijingChina
| | - Matthew T. V. Chan
- Department of Anaesthesia and Intensive CareThe Chinese University of Hong KongHong KongChina
| | - William K. K. Wu
- Department of Anaesthesia and Intensive CareThe Chinese University of Hong KongHong KongChina
- State Key Laboratory of Digestive DiseasesLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongChina
| | - Zhanyong Wu
- Department of Orthopedic SurgeryThe General Hospital of Xingtai Mining Industry Bloc.Orthopaedic Hospital of XingtaiXingtaiChina
| | - Jianxiong Shen
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
13
|
Karaarslan UC, Gurel IE, Yucekul A, Demirkiran HG, Samdani A, Yilgor C, Alanay A. Team Approach: Contemporary Treatment of Congenital Scoliosis. JBJS Rev 2019; 7:e5. [PMID: 31663918 DOI: 10.2106/jbjs.rvw.19.00001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Umut Can Karaarslan
- Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Ipek Ege Gurel
- Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Altug Yucekul
- Comprehensive Spine Center, Acibadem Maslak Hospital, Istanbul, Turkey
| | - H Gokhan Demirkiran
- Department of Orthopedics and Traumatology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Amer Samdani
- Department of Neurosurgery, Shriners Hospital for Children, Philadelphia, Pennsylvania
| | - Caglar Yilgor
- Acibadem Mehmet Ali Aydinlar University School of Medicine, Department of Orthopedics and Traumatology, Istanbul, Turkey
| | - Ahmet Alanay
- Acibadem Mehmet Ali Aydinlar University School of Medicine, Department of Orthopedics and Traumatology, Istanbul, Turkey
| |
Collapse
|
14
|
Chen C, Tan H, Bi J, Li L, Rong T, Lin Y, Sun P, Liang J, Jiao Y, Li Z, Sun L, Shen J. LncRNA-SULT1C2A regulates Foxo4 in congenital scoliosis by targeting rno-miR-466c-5p through PI3K-ATK signalling. J Cell Mol Med 2019; 23:4582-4591. [PMID: 31044535 PMCID: PMC6584475 DOI: 10.1111/jcmm.14355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/31/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022] Open
Abstract
Congenital scoliosis (CS) is the result of anomalous vertebrae development, but the pathogenesis of CS remains unclear. Long non‐coding RNAs (lncRNAs) have been implicated in embryo development, but their role in CS remains unknown. In this study, we investigated the role and mechanisms of a specific lncRNA, SULT1C2A, in somitogenesis in a rat model of vitamin A deficiency (VAD)‐induced CS. Bioinformatics analysis and quantitative real‐time PCR (qRT‐PCR) indicated that SULT1C2A expression was down‐regulated in VAD group, accompanied by increased expression of rno‐miR‐466c‐5p but decreased expression of Foxo4 and somitogenesis‐related genes such as Pax1, Nkx3‐2 and Sox9 on gestational day (GD) 9. Luciferase reporter and small interfering RNA (siRNA) assays showed that SULT1C2A functioned as a competing endogenous RNA to inhibit rno‐miR‐466c‐5p expression by direct binding, and rno‐miR‐466c‐5p inhibited Foxo4 expression by binding to its 3′ untranslated region (UTR). The spatiotemporal expression of SULT1C2A, rno‐miR‐466c‐5p and Foxo4 axis was dynamically altered on GDs 3, 8, 11, 15 and 21 as detected by qRT‐PCR and northern blot analyses, with parallel changes in Protein kinase B (AKT) phosphorylation and PI3K expression. Taken together, our findings indicate that SULT1C2A enhanced Foxo4 expression by negatively modulating rno‐miR‐466c‐5p expression via the PI3K‐ATK signalling pathway in the rat model of VAD‐CS. Thus, SULT1C2A may be a potential target for treating CS.
Collapse
Affiliation(s)
- Chong Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haining Tan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiaqi Bi
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lin Li
- Beijing Zhongke Jingyun Technology Company Ltd., Beijing, China
| | - Tianhua Rong
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Youxi Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Peiyu Sun
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Orthopedics Surgery, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Jinqian Liang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yang Jiao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zheng Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liang Sun
- Beijing Zhongke Jingyun Technology Company Ltd., Beijing, China
| | - Jianxiong Shen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Li Z, Li X, Bi J, Chan MTV, Wu WKK, Shen J. Melatonin protected against the detrimental effects of microRNA-363 in a rat model of vitamin A-associated congenital spinal deformities: Involvement of Notch signaling. J Pineal Res 2019; 66:e12558. [PMID: 30653707 DOI: 10.1111/jpi.12558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 12/30/2018] [Accepted: 12/30/2018] [Indexed: 12/18/2022]
Abstract
Congenital spinal deformities are a result of defective somitogenesis and are associated with vitamin A deficiency (VAD). However, the molecular mechanisms of VAD-associated congenital spinal deformities remain largely unknown. Increasing number of studies suggested that microRNAs and melatonin played important roles in the development of congenital spinal deformities. In this study, we showed that the whole-embryo expression of miR-363 was upregulated in VAD rats. Furthermore, we demonstrated that miR-363 inhibited the proliferation and neuronal differentiation of primary cultured NSCs, accompanied by downregulation of Notch1. To this end, melatonin suppressed miR-363 expression and rescued the effects of miR-363 on NSC proliferation and neuronal differentiation together with restoration of Notch signaling. The present study provided new insights into the mechanism of VAD-associated spinal deformities and the therapeutic effect of melatonin that may lead to novel understanding of the molecular mechanisms of congenital spinal deformities.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingye Li
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, Beijing, China
| | - Jiaqi Bi
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Li Z, Ma J, Bi J, Guo H, Chan MTV, Wu WKK, Wu Z, Shen J. MicroRNA signature of air pollution exposure‐induced congenital defects. J Cell Physiol 2019; 234:17896-17904. [PMID: 30883755 DOI: 10.1002/jcp.28422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jianqing Ma
- Department of Orthopedic Surgery The General Hospital of Xingtai Mining Industry Bloc., Orthopaedic Hospital of Xingtai, Xingtai Hebei China
| | - Jiaqi Bi
- Department of Orthopaedic Surgery Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Haiwei Guo
- Department of Orthopaedic Surgery Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Matthew T. V. Chan
- Department of Anaesthesia and Intensive Care The Chinese University of Hong Kong Hong Kong China
| | - William K. K. Wu
- Department of Anaesthesia and Intensive Care The Chinese University of Hong Kong Hong Kong China
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong Hong Kong China
| | - Zhanyong Wu
- Department of Orthopedic Surgery The General Hospital of Xingtai Mining Industry Bloc., Orthopaedic Hospital of Xingtai, Xingtai Hebei China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| |
Collapse
|
17
|
Mackel CE, Jada A, Samdani AF, Stephen JH, Bennett JT, Baaj AA, Hwang SW. A comprehensive review of the diagnosis and management of congenital scoliosis. Childs Nerv Syst 2018; 34:2155-2171. [PMID: 30078055 DOI: 10.1007/s00381-018-3915-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE To provide the reader with a comprehensive but concise understanding of congenital scoliosis METHODS: We have undertaken to summarize available literature on the pathophysiology, epidemiology, and management of congenital scoliosis. RESULTS Congenital scoliosis represents 10% of pediatric spine deformity and is a developmental error in segmentation, formation, or a combination of both leading to curvature of the spine. Treatment options are complicated by balancing growth potential with curve severity. Often associated abnormalities of cardiac, genitourinary, or intraspinal systems are concurrent and should be evaluated as part of the diagnostic work-up. Management balances the risk of progression, growth potential, lung development/function, and associated risks. Surgical treatment options involve growth-permitting systems or fusions. CONCLUSION Congenital scoliosis is a complex spinal problem associated with many other anomalous findings. Treatment options are diverse but enable optimization of management and care of these children.
Collapse
Affiliation(s)
- Charles E Mackel
- Department of Neurosurgery, Tufts Medical Center and Floating Hospital for Children, 800 Washington St, Boston, 02111, MA, USA
| | - Ajit Jada
- Department of Neurological Surgery, Weill Cornell Medical College, Box 99, 525 E 68th St, New York, 10065, NY, USA
| | - Amer F Samdani
- Shriners Hospitals for Children-Philadelphia, 3551 N Broad Street, Philadelphia, PA, 19140, USA
| | - James H Stephen
- Department of Neurosurgery, University of Pennsylvania, 3400 Spruce St, Philadelphia, 19104, PA, USA
| | - James T Bennett
- Department of Orthopaedic Surgery, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, 19140, PA, USA
| | - Ali A Baaj
- Department of Neurological Surgery, Weill Cornell Medical College, Box 99, 525 E 68th St, New York, 10065, NY, USA
| | - Steven W Hwang
- Shriners Hospitals for Children-Philadelphia, 3551 N Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
18
|
Walker BS, Kramer AG, Lassiter CS. Atrazine affects craniofacial chondrogenesis and axial skeleton mineralization in zebrafish (Danio rerio). Toxicol Ind Health 2018; 34:329-338. [DOI: 10.1177/0748233718760419] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Atrazine is a commonly used herbicide that has previously been implicated as an endocrine-disrupting compound. Previous studies have shown that estrogenic endocrine-disrupting compounds affect the development of the heart, cartilage, and bone in zebrafish ( Danio rerio). To determine whether atrazine has effects similar to other endocrine disruptors, zebrafish embryos were treated with a range of atrazine concentrations. Atrazine treatment at a low concentration of 0.1 µM resulted in significant differences in craniofacial cartilage elements, while concentrations ≥1 µM led to decreased survival and increased heart rates. Fish treated with ≥1 µM atrazine also developed with delayed vertebrae mineralization. Higher concentrations of atrazine caused gross craniofacial defects and decreased hatching rates. Further studies into the molecular pathways disrupted in these developmental processes could shed light on a link between endocrine-disrupting compounds and developmental abnormalities.
Collapse
|
19
|
Watanabe K, Michikawa T, Yonezawa I, Takaso M, Minami S, Soshi S, Tsuji T, Okada E, Abe K, Takahashi M, Asakura K, Nishiwaki Y, Matsumoto M. Physical Activities and Lifestyle Factors Related to Adolescent Idiopathic Scoliosis. J Bone Joint Surg Am 2017; 99:284-294. [PMID: 28196030 DOI: 10.2106/jbjs.16.00459] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND In addition to genetic factors, environmental and lifestyle factors are thought to play an important role in the onset of adolescent idiopathic scoliosis (AIS). This cross-sectional study was conducted to explore lifestyle factors related to AIS. METHODS This study included 2,759 Japanese female junior high school students who planned a secondary screening after an initial moiré topography screening indicated possible scoliosis. The students and their mothers, or guardians, were asked to fill out a questionnaire consisting of 38 questions about demographic factors, lifestyle-related factors, social factors, household environment, participation in sports, health status, and factors related to the mother's pregnancy and delivery. The questionnaire was completed by 2,747 students (a 99.6% response rate). After excluding students with heart disease, neurological disease, or a congenital vertebral anomaly, 2,600 students were eligible for assessment. After undergoing a secondary screening with standing radiographs of the spine, students were assigned to the normal (control) group if radiographs showed a curve of <15° or to the scoliosis group if they had a curve of ≥15°. The odds ratios (ORs) for AIS in relation to the possible risk or preventive factors were estimated by logistic regression analyses. RESULTS No lifestyle-related factor was significantly associated with AIS. However, AIS was associated with classical ballet training (OR, 1.38; 95% confidence interval [CI], 1.09 to 1.75); the odds of AIS developing increased as the child's frequency of training, number of years of experience, and duration of training in ballet increased. The OR for AIS was 1.5 times higher for participants whose mothers had scoliosis. AIS was also associated with a low body mass index (BMI). These associations remained even after mutual adjustment was performed. CONCLUSIONS No association was found between AIS and lifestyle-related factors. However, classical ballet training, a family history of scoliosis, and low BMI may be associated with AIS. LEVEL OF EVIDENCE Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Kota Watanabe
- 1Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan 2National Institute for Environmental Studies, Ibaraki, Japan 3Department of Orthopedic Surgery, Juntendo University, Tokyo, Japan 4Department of Orthopedic Surgery, Kitasato University, Kanagawa, Japan 5Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Chiba, Japan 6Department of Orthopedic Surgery, Zikei University, Tokyo, Japan 7Department of Orthopedic Surgery, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan 8Department of Orthopedic Surgery, Saiseikai Chuo Hospital, Tokyo, Japan 9Tokyo Health Service Association, Tokyo, Japan 10Interfaculty Initiative in Information Studies, The University of Tokyo, Tokyo, Japan 11Division of Environmental and Occupational Health, Toho University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|