1
|
d’Errico G, Aloj V, Ventorino V, Bottiglieri A, Comite E, Ritieni A, Marra R, Bolletti Censi S, Flematti GR, Pepe O, Vinale F. Methyl t-butyl ether-degrading bacteria for bioremediation and biocontrol purposes. PLoS One 2020; 15:e0228936. [PMID: 32084150 PMCID: PMC7034917 DOI: 10.1371/journal.pone.0228936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/27/2020] [Indexed: 11/27/2022] Open
Abstract
A total of fifteen potential methyl t-butyl ether (MtBE)-degrading bacterial strains were isolated from contaminated soil. They have been identified as belonging to the genera Bacillus, Pseudomonas, Kocuria, Janibacter, Starkeya, Bosea, Mycolicibacterium, and Rhodovarius. Bacillus aryabhattai R1B, S. novella R8b, and M. mucogenicum R8i were able to grow using MtBE as carbon source, exhibiting different growth behavior and contaminant degradation ability. Their biocontrol ability was tested against various fungal pathogens. Both S. novella R8b and B. aryabhattai were effective in reducing the development of necrotic areas on leaves within 48 hours from Botritys cinerea and Alternaria alternata inoculation. Whereas, M. mucogenicum effectively controlled B. cinerea after 72 hours. Similar results were achieved using Pythium ultimum, in which the application of isolated bacteria increased seed germination. Only M. mucogenicum elicited tomato plants resistance against B. cinerea. This is the first report describing the occurrence of bioremediation and biocontrol activities in M. mucogenicum, B. aryabhattai and S. novella species. The production of maculosin and its antibiotic activity against Rhizoctonia solani has been reported for first time from S. novella. Our results highlight the importance of multidisciplinary approaches to achieve a consistent selection of bacterial strains useful for plant protection and bioremediation purposes.
Collapse
Affiliation(s)
- Giada d’Errico
- University of Naples Federico II, Department of Agricultural Sciences, Portici (NA), Italy
| | - Veronica Aloj
- University of Naples Federico II, Department of Agricultural Sciences, Portici (NA), Italy
| | - Valeria Ventorino
- University of Naples Federico II, Department of Agricultural Sciences, Portici (NA), Italy
| | - Assunta Bottiglieri
- University of Naples Federico II, Department of Agricultural Sciences, Portici (NA), Italy
| | - Ernesto Comite
- University of Naples Federico II, Department of Agricultural Sciences, Portici (NA), Italy
| | - Alberto Ritieni
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | - Roberta Marra
- University of Naples Federico II, Department of Agricultural Sciences, Portici (NA), Italy
| | | | - Gavin R. Flematti
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Olimpia Pepe
- University of Naples Federico II, Department of Agricultural Sciences, Portici (NA), Italy
| | - Francesco Vinale
- University of Naples Federico II, Department of Veterinary Medicine and Animal Production, Naples, Italy
- National Research Council, Institute for Sustainable Plant Protection, Portici (NA), Italy
- * E-mail:
| |
Collapse
|
2
|
Li S, Wang D, Du D, Qian K, Yan W. Characterization of co-metabolic biodegradation of methyl tert-butyl ether by a Acinetobacter sp. strain. RSC Adv 2019; 9:38962-38972. [PMID: 35540635 PMCID: PMC9076015 DOI: 10.1039/c9ra09507a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 11/21/2022] Open
Abstract
Co-metabolic bioremediation is a promising approach for the elimination of methyl tert-butyl ether (MTBE), which is a common pollutant found worldwide in ground water. In this paper, a bacterial strain able to co-metabolically degrade MTBE was isolated and named as Acinetobacter sp. SL3 based on 16S rRNA gene sequencing analysis. Strain SL3 could grow on n-alkanes (C5-C8) accompanied with the co-metabolic degradation of MTBE. The number of carbons present in the n-alkane substrate significantly influenced the degradation rate of MTBE and accumulation of tert-butyl alcohol (TBA), with n-octane resulting in a higher MTBE degradation rate (V max = 36.7 nmol min-1 mgprotein -1, K s = 6.4 mmol L-1) and lower TBA accumulation rate. A degradation experiment in a fed-batch reactor revealed that the efficiency of MTBE degradation by Acinetobacter sp. strain SL3 did not show an obvious decrease after nine rounds of MTBE replenishment ranging from 0.1-0.5 mmol L-1. The results of this paper reveal the preferable properties of Acinetobacter sp. SL3 for the bioremediation of MTBE via co-metabolism and leads towards the development of new MTBE elimination technologies.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Environmental Science & Engineering, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Dan Wang
- Department of Environmental Science & Engineering, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Dan Du
- Department of Environmental Science & Engineering, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Keke Qian
- Department of Environmental Science & Engineering, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Wei Yan
- Department of Environmental Science & Engineering, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| |
Collapse
|
3
|
Biodegradation of sulfamethazine by an isolated thermophile–Geobacillus sp. S-07. World J Microbiol Biotechnol 2017; 33:85. [DOI: 10.1007/s11274-017-2245-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
|
4
|
Lu Q, de Toledo RA, Xie F, Li J, Shim H. Reutilization of waste scrap tyre as the immobilization matrix for the enhanced bioremoval of a monoaromatic hydrocarbons, methyl tert-butyl ether, and chlorinated ethenes mixture from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 583:88-96. [PMID: 28109662 DOI: 10.1016/j.scitotenv.2017.01.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 01/01/2017] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
BTEX (benzene, toluene, ethylbenzene, ortho-, meta-, and para-xylenes), methyl tert-butyl ether (MTBE), cis-1,2-dichloroethylene (cis-DCE), and trichloroethylene (TCE) are among the major soil and groundwater contaminants frequently co-existing, as a result of their widespread uses. Pseudomonas plecoglossicida was immobilized on waste scrap tyre to remove these contaminants mixture from synthetic contaminated water. The microbial activity was enhanced in the immobilized system, shown by the higher colony forming units (CFUs) (40%), while BTEX were used as growth substrates. The adsorption capacity of tyres toward contaminants reached a maximum within one day, with BTEX (76.3%) and TCE (64.3%) showing the highest sorption removal capacities, followed by cis-DCE (30.0%) and MTBE (11.0%). The adsorption data fitted the Freundlich isotherm with a good linear correlation (0.989-0.999) for the initial contaminants concentration range applied (25-125mg/L). The monoaromatic hydrocarbons were almost completely removed in the immobilized system and the favourable removal efficiencies of 78% and 90% were obtained for cis-DCE and TCE, respectively. The hybrid (biological, immobilization/physical, sorption) system was further evaluated with the contaminants spiked intermittently for the stable performance. The addition of mineral salt medium further enhanced the bioremoval of contaminants by stimulating the microbial growth to some extent.
Collapse
Affiliation(s)
- Qihong Lu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078, China; School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Renata Alves de Toledo
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078, China
| | - Fei Xie
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078, China; Shanxi Academy for Environmental Planning, Taiyuan 030002, China
| | - Junhui Li
- College of Natural Resources and Environmental Science, South China Agricultural University, Guangzhou 510642, China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
5
|
Yang Y, Liu Y, Yang T, Lv Y. Characterization of a microbial consortium capable of heterotrophic nitrifying under wide C/N range and its potential application in phenolic and coking wastewater. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Li S, Qian K, Wang S, Liang K, Yan W. Polypyrrole-Grafted Coconut Shell Biological Carbon as a Potential Adsorbent for Methyl Tert-Butyl Ether Removal: Characterization and Adsorption Capability. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14020113. [PMID: 28125030 PMCID: PMC5334667 DOI: 10.3390/ijerph14020113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 11/16/2022]
Abstract
Methyl tert-butyl ether (MTBE) has been used as a common gasoline additive worldwide since the late twentieth century, and it has become the most frequently detected groundwater pollutant in many countries. This study aimed to synthesize a novel microbial carrier to improve its adsorptive capacity for MTBE and biofilm formation, compared to the traditional granular activated carbon (GAC). A polypyrrole (PPy)-modified GAC composite (PPy/GAC) was synthesized, and characterized by Fourier transform infrared spectroscopy (FT-IR) and Brunauer-Emmett-Teller (BET) surface area analysis. The adsorption behaviors of MTBE were well described by the pseudo-second-order and Langmuir isotherm models. Furthermore, three biofilm reactors were established with PPy/GAC, PPy, and GAC as the carriers, respectively, and the degradation of MTBE under continuous flow was investigated. Compared to the biofilm reactors with PPy or GAC (which both broke after a period of operation), the PPy/GAC biofilm column produced stable effluents under variable treatment conditions with a long-term effluent MTBE concentration <20 μg/L. Pseudomonas aeruginosa and Acinetobacter pittii may be the predominant bacteria responsible for MTBE degradation in these biofilm reactors.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Keke Qian
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shan Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Kaiqiang Liang
- Research Institute of Yanchang Petroleum (GROUP) Co. Ltd., Xi'an 710075, China.
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
7
|
Biodegradation of Methyl Tertiary Butyl Ether (MTBE) by a Microbial Consortium in a Continuous Up-Flow Packed-Bed Biofilm Reactor: Kinetic Study, Metabolite Identification and Toxicity Bioassays. PLoS One 2016; 11:e0167494. [PMID: 27907122 PMCID: PMC5132332 DOI: 10.1371/journal.pone.0167494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/15/2016] [Indexed: 02/01/2023] Open
Abstract
This study investigated the aerobic biodegradation of methyl tertiary-butyl ether (MTBE) by a microbial consortium in a continuous up-flow packed-bed biofilm reactor using tezontle stone particles as a supporting material for the biofilm. Although MTBE is toxic for microbial communities, the microbial consortium used here was able to resist MTBE loading rates up to 128.3 mg L-1 h-1, with removal efficiencies of MTBE and chemical oxygen demand (COD) higher than 90%. A linear relationship was observed between the MTBE loading rate and the MTBE removal rate, as well as between the COD loading rate and the COD removal rate, within the interval of MTBE loading rates from 11.98 to 183.71 mg L-1 h-1. The metabolic intermediate tertiary butyl alcohol (TBA) was not detected in the effluent during all reactor runs, and the intermediate 2-hydroxy butyric acid (2-HIBA) was only detected at MTBE loading rates higher than 128.3 mg L-1 h-1. The results of toxicity bioassays with organisms from two different trophic levels revealed that the toxicity of the influent was significantly reduced after treatment in the packed-bed reactor. The packed-bed reactor system used in this study was highly effective for the continuous biodegradation of MTBE and is therefore a promising alternative for detoxifying MTBE-laden wastewater and groundwater.
Collapse
|
8
|
Biodegradation of Methyl tert-Butyl Ether by Co-Metabolism with a Pseudomonas sp. Strain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13090883. [PMID: 27608032 PMCID: PMC5036716 DOI: 10.3390/ijerph13090883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/17/2016] [Accepted: 08/30/2016] [Indexed: 11/24/2022]
Abstract
Co-metabolic bioremediation is supposed to be an impressive and promising approach in the elimination technology of methyl tert-butyl ether (MTBE), which was found to be a common pollutant worldwide in the ground or underground water in recent years. In this paper, bacterial strain DZ13 (which can co-metabolically degrade MTBE) was isolated and named as Pseudomonas sp. DZ13 based on the result of 16S rRNA gene sequencing analysis. Strain DZ13 could grow on n-alkanes (C5-C8), accompanied with the co-metabolic degradation of MTBE. Diverse n-alkanes with different carbon number showed a significant influence on the degradation rate of MTBE and accumulation of tert-butyl alcohol (TBA). When Pseudomonas sp. DZ13 co-metabolically degraded MTBE with n-pentane as the growth substrate, a higher MTBE-degrading rate (Vmax = 38.1 nmol/min/mgprotein, Ks = 6.8 mmol/L) and lower TBA-accumulation was observed. In the continuous degradation experiment, the removal efficiency of MTBE by Pseudomonas sp. Strain DZ13 did not show an obvious decrease after five times of continuous addition.
Collapse
|