1
|
Efficient toluene oxidation by post plasma catalysis over hollow Co3O4 nanospheres. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
2
|
Zhao Y, Zhuang Y, Ye K, Wu Y, Luo C, Li D, Zhang Y, Yao J, Ali S. Decomposition of VOCs by a novel catalytic DBD plasma reactor: A pilot study. ChemistrySelect 2022. [DOI: 10.1002/slct.202201614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yafei Zhao
- Technology R&D Department Fujian Longking Co., Ltd. Longyan 364000 China
| | - Ye Zhuang
- Technology R&D Department Fujian Longking Co., Ltd. Longyan 364000 China
| | - Kai Ye
- Technology R&D Department Fujian Longking Co., Ltd. Longyan 364000 China
| | - Yifei Wu
- Technology R&D Department Fujian Longking Co., Ltd. Longyan 364000 China
| | - Changhe Luo
- Technology R&D Department Fujian Longking Co., Ltd. Longyan 364000 China
| | - Dan Li
- Technology R&D Department Fujian Longking Co., Ltd. Longyan 364000 China
| | - Yi Zhang
- Technology R&D Department Fujian Longking Co., Ltd. Longyan 364000 China
| | - Jin Yao
- School of Chemistry and Materials Science University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Sajid Ali
- Department of Chemical and Biochemical Engineering Xiamen University Xiamen Fujian Xiamen 361005 China)
| |
Collapse
|
3
|
Chang T, Wang Y, Wang Y, Zhao Z, Shen Z, Huang Y, Veerapandian SKP, De Geyter N, Wang C, Chen Q, Morent R. A critical review on plasma-catalytic removal of VOCs: Catalyst development, process parameters and synergetic reaction mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154290. [PMID: 35248631 DOI: 10.1016/j.scitotenv.2022.154290] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
It is urgent to control the emission of volatile organic compounds (VOCs) due to their harmful effects on the environment and human health. A hybrid system integrating non-thermal-plasma and catalysis is regarded as one of the most promising technologies for VOCs removal due to their high VOCs removal efficiency, product selectivity and energy efficiency. This review systematically documents the main findings and improvements of VOCs removal using plasma-catalysis technology in recent 10 years. To better understand the fundamental relation between different aspects of this research field, this review mainly addresses the catalyst development, key influential factors, generation of by-products and reaction mechanism of VOCs decomposition in the plasma-catalysis process. Also, a comparison of the performance in various VOCs removal processes is provided. Particular emphasis is given to the importance of the selected catalyst and the synergy of plasma and catalyst in the VOCs removal in the hybrid system, which can be used as a reference point for future studies in this field.
Collapse
Affiliation(s)
- Tian Chang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 - B4, 9000 Ghent, Belgium; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China; State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yu Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yaqi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zuotong Zhao
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu Huang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Savita K P Veerapandian
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 - B4, 9000 Ghent, Belgium.
| | - Nathalie De Geyter
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 - B4, 9000 Ghent, Belgium
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Rino Morent
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 - B4, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Plasma-catalytic oxidation of volatile organic compounds with honeycomb catalyst for industrial application. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Refluxing-coprecipitation to synthesize Fex−Mny/γ-Al2O3 catalyst for toluene removal in a nonthermal plasma-catalysis reactor. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Wang B, Yang F, Song Z, Sun L. Removal of Hg 0, NO, and SO 2 by the surface dielectric barrier discharge coupled with Mn/Ce/Ti-based catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17648-17658. [PMID: 33403635 DOI: 10.1007/s11356-020-11886-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
In this study, power parameters (power, frequency, and voltage), initial Hg0 concentration, and residence time are investigated for the removal of the increased Hg0 concentration via surface dielectric barrier discharge (SDBD). The synergistic effect of a Mn/Ce/Ti catalyst with SDBD is verified with a mixture of flue gas (Hg0, NO, and SO2). Results show that Hg0 oxidation efficiency has an optimal frequency, which declines as the input voltage increases. The amplification of the Hg0 removal efficiency decreases as voltage increases. The effect of the initial Hg0 concentration gradually decreases as the peak voltage increases. The residence time slightly affects the Hg0 removal efficiency at a high peak voltage. The cooling water temperature behaves differently on Hg0 oxidation under high and low voltages. X-ray photoelectron spectroscopy (XPS) reveals the relative atomic concentrations of Mn2+ and Mn3+ in the Mn-TiO2 and Mn-Ce-TiO2 catalysts are 66.84% and 65.80%, respectively, which indicate that Ce addition will not affect surface Mn. Mn has a limited catalytic action on the removal of flue gas with and without SDBD. Nevertheless, SDBD can stimulate the oxygen storage capacity of Mn to increase the NO2 conversion rate. Mn-Ce-TiO2 greatly improves the removal efficiencies of NO and SO2 because of the existence of the redox pairs of Mn4+/Mn3+, Ce4+/Ce3+, and Ti4+/Ti3+. However, the three catalysts slightly differ on Hg0 removal when combined with SDBD, indicating that the effect of the catalyst was weakened after SDBD was added.
Collapse
Affiliation(s)
- Ben Wang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fan Yang
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zijian Song
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Lushi Sun
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
7
|
Bo Z, Yang S, Kong J, Zhu J, Wang Y, Yang H, Li X, Yan J, Cen K, Tu X. Solar-Enhanced Plasma-Catalytic Oxidation of Toluene over a Bifunctional Graphene Fin Foam Decorated with Nanofin-like MnO 2. ACS Catal 2020; 10:4420-4432. [PMID: 32296596 PMCID: PMC7147263 DOI: 10.1021/acscatal.9b04844] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/27/2020] [Indexed: 12/20/2022]
Abstract
In this work, we propose a hybrid and unique process combining solar irradiation and post-plasma catalysis (PPC) for the effective oxidation of toluene over a highly active and stable MnO2/GFF (bifunctional graphene fin foam) catalyst. The bifunctional GFF, serving as both the catalyst support and light absorber, is decorated with MnO2 nanofins, forming a hierarchical fin-on-fin structure. The results show that the MnO2/GFF catalyst can effectively capture and convert renewable solar energy into heat (absorption of >95%), leading to a temperature rise (55.6 °C) of the catalyst bed under solar irradiation (1 sun, light intensity 1000 W m-2). The catalyst weight (9.8 mg) used in this work was significantly lower (10-100 times lower) than that used in previous studies (usually 100-1000 mg). Introducing solar energy into the typical PPC process via solar thermal conversion significantly enhances the conversion of toluene and CO2 selectivity by 36-63%, reaching ∼93% for toluene conversion and ∼83% for CO2 selectivity at a specific input energy of ∼350 J L-1, thus remarkably reducing the energy consumption of the plasma-catalytic gas cleaning process. The energy efficiency for toluene conversion in the solar-enhanced post-plasma catalytic (SEPPC) process reaches up to 12.7 g kWh-1, ∼57% higher than that using the PPC process without solar irradiation (8.1 g kWh-1), whereas the energy consumption of the SEPPC process is reduced by 35-52%. Moreover, the MnO2/GFF catalyst exhibits an excellent self-cleaning capability induced by solar irradiation, demonstrating a superior long-term catalytic stability of 72 h at 1 sun, significantly better than that reported in previous works. The prominent synergistic effect of solar irradiation and PPC with a synergistic capacity of ∼42% can be mainly attributed to the solar-induced thermal effect on the catalyst bed, boosting ozone decomposition (an almost triple enhancement from ∼0.18 gO3 g-1 h-1 for PPC to ∼0.52 gO3 g-1 h-1 for SEPPC) to generate more oxidative species (e.g., O radicals) and enhancing the catalytic oxidation on the catalyst surfaces, as well as the self-cleaning capacity of the catalyst at elevated temperatures driven by solar irradiation. This work opens a rational route to use abundant, renewable solar power to achieve high-performance and energy-efficient removal of volatile organic compounds.
Collapse
Affiliation(s)
- Zheng Bo
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Shiling Yang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Jing Kong
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Jinhui Zhu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Yaolin Wang
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K
| | - Huachao Yang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Xiaodong Li
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Kefa Cen
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Xin Tu
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K
| |
Collapse
|
8
|
Jiang D, Xia Z, Wang S, Li H, Gong X, Yuan C, El-Fatah Abomohra A, Cao B, Hu X, He Z, Wang Q. Mechanism research on catalytic pyrolysis of sulfated polysaccharide using ZSM-5 catalysts by Py-GC/MS and density functional theory studies. JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS 2019; 143:104680. [DOI: 10.1016/j.jaap.2019.104680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
9
|
Yao X, Zhang J, Liang X, Long C. Niobium doping enhanced catalytic performance of Mn/MCM-41 for toluene degradation in the NTP-catalysis system. CHEMOSPHERE 2019; 230:479-487. [PMID: 31121511 DOI: 10.1016/j.chemosphere.2019.05.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
The destruction of toluene in a dielectric barrier discharge (DBD) reactor with Nb-Mn/MCM-41 had been investigated and compared with X (X = Cu, Ce, Co)-Mn/MCM-41 catalysts. The XRD and TEM result confirms that the metal species were highly dispersed on the MCM-41. The results of XPS, O2-TPD and H2-TPR clearly demonstrate that Nb doping facilitated formation of lattice oxygen (Olatt) and the acid sites, which are all beneficial to catalytic degradation of toluene. Compared to X (Cu, Ce, Co)-Mn/MCM-41, Nb-Mn/MCM-41 had the most contents of Olatt, the most amounts of acid sites and the strongest acidity. Consequently, the catalytic performance tests identify that Nb-Mn/MCM-41 had the best catalytic performance, the highest removal efficiency and CO2 selectivity as well as carbon balance especially at low SIE. These results indicate that Nb was an important promoter improving the activity and CO2 selectivity of Mn/MCM-41 for the decomposition of toluene in NTP-catalysis system.
Collapse
Affiliation(s)
- Xiaohong Yao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xiaoyang Liang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chao Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China; Nanjing University Yancheng Environmental Protection Technology and Engineering Research Institute, 888 Yingbin Road, Yancheng, 22400, China.
| |
Collapse
|
10
|
Yang S, Bo Z, Yang H, Shuai X, Qi H, Li X, Yan J, Cen K. Hierarchical Petal-on-Petal MnO2/Vertical Graphene Foam for Postplasma Catalytic Decomposition of Toluene with High Efficiency and Ultralow Pressure Drop. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shiling Yang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Zheng Bo
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Huachao Yang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Xiaorui Shuai
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Hualei Qi
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Xiaodong Li
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Kefa Cen
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| |
Collapse
|
11
|
Lin L, Starostin SA, Li S, Hessel V. Synthesis of metallic nanoparticles by microplasma. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The synthesis of metallic nanoparticles has been of long standing interest, primarily induced by their novel and unique properties that differ considerably from bulk materials. Despite various methods have been developed, it is still a challenge to produce high-quality metallic nanoparticles with controllable properties in a simple, cost-effective and environmentally benign manner. However, the development of the microplasma-assisted technology can bring an answer to this formidable challenge. In the present work, four main microplasma configurations used for metallic synthesis of metallic nanoparticles are reviewed. These are hollow-electrode microdischarges, microplasma jets with external electrodes, microplasma jets with consumable electrodes and plasma–liquid systems. The state of the art characterization methodologies and diagnostic techniques for in situ microplasma-assisted precursor dissociation as well as ex situ metallic nanoparticles analysis is also summarized. Further, a broad category of representative examples of microplasma-induced metallic nanoparticle fabrication is presented, together with the discussion of possible synthesis mechanisms. This is followed by a brief introduction to related safety considerations. Finally, the future perspectives, associated challenges and feasible solutions for scale-up of this technique are pointed out.
Graphical Abstract:
Collapse
|
12
|
The Design of MnOx Based Catalyst in Post-Plasma Catalysis Configuration for Toluene Abatement. Catalysts 2018. [DOI: 10.3390/catal8020091] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review provides an overview of our present state of knowledge using manganese oxide (MnOx)-based catalysts for toluene abatement in PPC (Post plasma-catalysis) configuration. The context of this study is concisely sum-up. After briefly screening the main depollution methods, the principles of PPC are exposed based on the coupling of two mature technologies such as NTP (Non thermal plasma) and catalysis. In that respect, the presentation of the abundant manganese oxides will be firstly given. Then in a second step the main features of MnOx allowing better performances in the reactions expected to occur in the abatement of toluene in PPC process are reviewed including ozone decomposition, toluene ozonation, CO oxidation and toluene total oxidation. Finally, in a last part the current status of the applications of PPC using MnOx on toluene abatement are discussed. In a first step, the selected variables of the hybrid process related to the experimental conditions of toluene abatement in air are identified. The selected variables are those expected to play a role in the performances of PPC system towards toluene abatement. Then the descriptors linked to the performances of the hybrid process in terms of efficiency are given and the effects of the variables on the experimental outcomes (descriptors) are discussed. The review would serve as a reference guide for the optimization of the PPC process using MnOx-based oxides for toluene abatement.
Collapse
|
13
|
Environmental plasma-catalysis for the energy-efficient treatment of volatile organic compounds. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-015-0300-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|