1
|
Martins C, Teófilo V, Clemente M, Corda M, Fermoso J, Aguado A, Rodriguez S, Moshammer H, Kristian A, Ferri M, Costa-Ruiz B, Pérez L, Hanke W, Badyda A, Kepa P, Affek K, Doskocz N, Martín-Torrijos L, Mulayim MO, Martinez CM, Gómez A, González R, Cano I, Roca J, de Leede S, Viegas S. Sources, levels, and determinants of indoor air pollutants in Europe: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178574. [PMID: 39855122 DOI: 10.1016/j.scitotenv.2025.178574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Clean air is a requirement for life, and the quality of indoor air is a health determinant since people spend most of their daily time indoors. The aim of this study was to systematically review the available evidence regarding the sources, determinants and concentrations of indoor air pollutants in a set of scenarios under study in K-HEALTHinAIR project. To this end, a systematic review was performed to review the available studies published between the years 2013-2023, for several settings (schools, homes, hospitals, lecture halls, retirement homes, public transports and canteens), conducted in Europe, where sources and determinants of the indoor pollutants concentrations was assessed. After a two-stage screening in abstract and full-text, 148 papers were included for data extraction. For particulate matter, carbon dioxide and volatile organic compounds, several emission sources were identified (occupancy, human activities, resuspension, cleaning products, disinfectants, craft activities, cooking, smoking), with ventilation, number of occupants, building characteristics, being considered as important determinants. This review made also possible to discuss some of the actions that are already in place or should be implemented in the future to prevent and control the presence of pollutants indoors.
Collapse
Affiliation(s)
- Carla Martins
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal.
| | - Vânia Teófilo
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| | - Marta Clemente
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| | - Mariana Corda
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| | | | | | | | - Hanns Moshammer
- Medical University of Vienna, ZPH, Department of Environmental Health, Vienna, Austria
| | - Alexandra Kristian
- Medical University of Vienna, ZPH, Department of Environmental Health, Vienna, Austria
| | | | | | | | | | - Artur Badyda
- Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw, Poland
| | - Piotr Kepa
- Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw, Poland
| | - Katarzyna Affek
- Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw, Poland
| | - Nina Doskocz
- Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw, Poland
| | - Laura Martín-Torrijos
- Department of Mycology at Real Jardín Botánico, CSIC (RJB-CSIC), Plaza de Murillo 2, 28014 Madrid, Spain
| | - Mehmet Oguz Mulayim
- Artificial Intelligence Research Institute (IIIA), CSIC, Campus de la UAB, Cerdanyola del Vallès 08193, Spain
| | | | - Alba Gómez
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Ruben González
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Isaac Cano
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain; University of Barcelona, Faculty of Medicine, Barcelona, Spain
| | - Josep Roca
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Simon de Leede
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| |
Collapse
|
2
|
Saraga DΕ, Querol X, Duarte RMBO, Aquilina NJ, Canha N, Alvarez EG, Jovasevic-Stojanovic M, Bekö G, Byčenkienė S, Kovacevic R, Plauškaitė K, Carslaw N. Source apportionment for indoor air pollution: Current challenges and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165744. [PMID: 37487894 DOI: 10.1016/j.scitotenv.2023.165744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Source apportionment (SA) for indoor air pollution is challenging due to the multiplicity and high variability of indoor sources, the complex physical and chemical processes that act as primary sources, sinks and sources of precursors that lead to secondary formation, and the interconnection with the outdoor environment. While the major indoor sources have been recognized, there is still a need for understanding the contribution of indoor versus outdoor-generated pollutants penetrating indoors, and how SA is influenced by the complex processes that occur in indoor environments. This paper reviews our current understanding of SA, through reviewing information on the SA techniques used, the targeted pollutants that have been studied to date, and their source apportionment, along with limitations or knowledge gaps in this research field. The majority (78 %) of SA studies to date focused on PM chemical composition/size distribution, with fewer studies covering organic compounds such as ketones, carbonyls and aldehydes. Regarding the SA method used, the majority of studies have used Positive Matrix Factorization (31 %), Principal Component Analysis (26 %) and Chemical Mass Balance (7 %) receptor models. The indoor PM sources identified to date include building materials and furniture emissions, indoor combustion-related sources, cooking-related sources, resuspension, cleaning and consumer products emissions, secondary-generated pollutants indoors and other products and activity-related emissions. The outdoor environment contribution to the measured pollutant indoors varies considerably (<10 %- 90 %) among the studies. Future challenges for this research area include the need for optimization of indoor air quality monitoring and data selection as well as the incorporation of physical and chemical processes in indoor air into source apportionment methodology.
Collapse
Affiliation(s)
- Dikaia Ε Saraga
- Atmospheric Chemistry & Innovative Technologies Laboratory, INRASTES, NCSR Demokritos, Aghia Paraskevi, Athens 15310, Greece.
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Regina M B O Duarte
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Noel J Aquilina
- Department of Chemistry - Faculty of Science, Chemistry Building, University of Malta, Malta
| | - Nuno Canha
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Elena Gómez Alvarez
- Department of Agronomy, University of Cordoba, Campus de Rabanales, 14071 Cordoba, Spain
| | - Milena Jovasevic-Stojanovic
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Serbia
| | - Gabriel Bekö
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark; Healthy and Sustainable Built Environment Research Centre, Ajman University, Ajman, P.O. Box 346, United Arab Emirates
| | - Steigvilė Byčenkienė
- Department of Environmental Research, Center for Physical Sciences and Technology (FTMC), Saulėtekio ave. 3, LT-10257 Vilnius, Lithuania
| | | | - Kristina Plauškaitė
- Department of Environmental Research, Center for Physical Sciences and Technology (FTMC), Saulėtekio ave. 3, LT-10257 Vilnius, Lithuania
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, UK
| |
Collapse
|
3
|
Validation of an optimised microwave-assisted acid digestion method for trace and ultra-trace elements in indoor PM 2.5 by ICP-MS analysis. Heliyon 2023; 9:e12844. [PMID: 36691535 PMCID: PMC9860410 DOI: 10.1016/j.heliyon.2023.e12844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Three microwave-assisted digestion procedures, followed by analysis of digestates employing inductively coupled mass spectrometry (ICP-MS) were evaluated for use in the determination of elements at trace and ultra-trace levels in PM2.5 samples. Digestion procedure 1 used 2.5 mL HNO3 (65%) at 200 °C. Procedure 2, consisted of a two-stage digestion step at 200 °C with 2.5 mL HNO3 (65%) and 3 μL HF (48%) followed by 24 μL H3BO3 (5%). A 10-fold increase in the amounts of HF and H3BO3 was used for procedure 3. The addition of HF/H3BO3 was carried out to aid the dissolution of silicate matrices and refractory compounds. The digestions were carried out using PTFE ultra-trace inserts which increased the sample throughput threefold. The addition of small quantities of HF resulted in the effective solubilisation of Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Sr, Cd, Sb and Pb. The optimal method using HNO3/HF/H3BO3 digestion as in procedure 3 showed recovery efficiency greater than 70% for all elements. The validated method was applied to quantify the elemental content of indoor and outdoor PM2.5 (with samples <0.5 mg) at an urban background site in Malta.
Collapse
|
4
|
Abstract
The world population is ageing, in particular in the developed world, with a significant increase in the percentage of people above 60 years old. They represent a segment of the population that is more vulnerable to adverse environmental conditions. Among them, indoor air quality is one of the most relevant, as elders spend comparatively more time indoors than younger generations. Furthermore, the recent COVID-19 pandemic contributed immensely to raising awareness of the importance of breathing air quality for human health and of the fact that indoor air is a vector for airborne infections and poisoning. Hence, this work reviews the state of the art regarding indoor air quality in elderly centers, considering the type of pollutants involved, their emission sources, and their health effects. Moreover, the influence of ventilation on air quality is also addressed. Notwithstanding the potential health problems with the corresponding costs and morbidity effects, only a few studies have considered explicitly indoor air quality and its impacts on elderly health. More studies are, therefore, necessary to objectively identify what are the impacts on the health of elderly people due to the quality of indoor air and how it can be improved, either by reducing the pollutants emission sources or by more adequate ventilation and thermal comfort strategies.
Collapse
|
5
|
Assessment of the Variability of Air Pollutant Concentrations at Industrial, Traffic and Urban Background Stations in Krakow (Poland) Using Statistical Methods. SUSTAINABILITY 2021. [DOI: 10.3390/su13105623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In cities with an extensive air quality monitoring (AQM) system, the results of pollutant concentration measurements obtained in this system can be used not only for current assessments of air pollution, but also for analyzes aimed at better identification of factors influencing the air quality and for tracking trends in changes taking place in this regard. This can be achieved with the use of statistical methods that allow for the assessment of the variability of measurement data observed at stations of various types and for the determination of possible interdependencies between these data. In this article, an analysis of this type was carried out for traffic, urban background and industrial AQM stations in Krakow (Southern Poland) operating in the years 2017–2018 with the use of, i.a., cluster analyzes, as well as dependent samples t-test and Wilcoxon signed-rank test, taking into account the concentrations of air pollutants such as fine particulate matter (PM10), nitrogen dioxide (NO2), benzene (C6H6) and sulfur dioxide (SO2). On the basis of the conducted analyzes, similarities and differences were shown between the data observed at individual types of stations, and the possibilities of using them to identify the causes of the observed changes and the effects of remedial actions to improve air quality undertaken recently and planned in the future were indicated. It was found that the air concentrations of some substances measured at these stations can be used to assess the emission abatement effects in road transport (NO2, PM10 or C6H6), residential heating (PM10 or SO2), and selective industrial plants (SO2, NO2 or C6H6).
Collapse
|
6
|
Reddy M, Heidarinejad M, Stephens B, Rubinstein I. Adequate indoor air quality in nursing homes: An unmet medical need. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:144273. [PMID: 33401060 DOI: 10.1016/j.scitotenv.2020.144273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/22/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
A small but growing body of literature indicates that concentrations of indoor particulate and gaseous pollutants in long-term care facilities (i.e., skilled nursing facilities) for older adults, hereafter referred to nursing homes, often exceed those recorded in nearby, comparable outdoor environments. Unlike the outdoors, indoor air quality (IAQ) in nursing homes is not regulated by legislation and is seldom monitored. To that end, residents of nursing homes commonly spend the vast majority of their time indoors where they are exposed to indoor air pollutants for long periods of time. Given that many nursing home residents, especially those of advanced age, are more susceptible to the effects of air pollutants, even at low concentrations, this prolonged exposure may adversely affect their health, well-being, quality of life and increase medical expenditures due to frequent, unscheduled acute care visits and hospitalizations. We propose an action plan for assessing IAQ in nursing homes, understanding the impacts of IAQ on adverse health outcomes of nursing home residents, and addressing vulnerabilities in these facilities to safeguard health, well-being, and quality of life of nursing home residents and minimizing unscheduled acute care visits and hospitalizations. We propose that IAQ should be regularly monitored in nursing homes to proactively identify and address vulnerabilities in these facilities and that resources should be provided for remedial interventions to improve IAQ in nursing homes, including but not limited to source control, improving ventilation and filtration, and deploying air cleaners where appropriate. This proactive approach may pave the way for establishing enforceable standards for indoor air quality in nursing homes that will promote health, well-being, and quality of life of nursing home residents and reduce medical expenditures.
Collapse
Affiliation(s)
- Manasa Reddy
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, Department of Medicine, University of Illinois at Chicago, USA; Jesse Brown VA Medical Center, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Mohammad Heidarinejad
- Department of Civil, Architectural and Environmental Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Brent Stephens
- Department of Civil, Architectural and Environmental Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Israel Rubinstein
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, Department of Medicine, University of Illinois at Chicago, USA; Jesse Brown VA Medical Center, Illinois Institute of Technology, Chicago, IL 60616, USA.
| |
Collapse
|
7
|
Saraga D, Maggos T, Degrendele C, Klánová J, Horvat M, Kocman D, Kanduč T, Garcia Dos Santos S, Franco R, Gómez PM, Manousakas M, Bairachtari K, Eleftheriadis K, Kermenidou M, Karakitsios S, Gotti A, Sarigiannis D. Multi-city comparative PM 2.5 source apportionment for fifteen sites in Europe: The ICARUS project. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141855. [PMID: 32889477 DOI: 10.1016/j.scitotenv.2020.141855] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/01/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
PM2.5 is an air pollution metric widely used to assess air quality, with the European Union having set targets for reduction in PM2.5 levels and population exposure. A major challenge for the scientific community is to identify, quantify and characterize the sources of atmospheric particles in the aspect of proposing effective control strategies. In the frame of ICARUS EU2020 project, a comprehensive database including PM2.5 concentration and chemical composition (ions, metals, organic/elemental carbon, Polycyclic Aromatic Hydrocarbons) from three sites (traffic, urban background, rural) of five European cities (Athens, Brno, Ljubljana, Madrid, Thessaloniki) was created. The common and synchronous sampling (two seasons involved) and analysis procedure offered the prospect of a harmonized Positive Matrix Factorization model approach, with the scope of identifying the similarities and differences of PM2.5 key-source chemical fingerprints across the sampling sites. The results indicated that the average contribution of traffic exhausts to PM2.5 concentration was 23.3% (traffic sites), 13.3% (urban background sites) and 8.8% (rural sites). The average contribution of traffic non-exhausts was 12.6% (traffic), 13.5% (urban background) and 6.1% (rural sites). The contribution of fuel oil combustion was 3.8% at traffic, 11.6% at urban background and 18.7% at rural sites. Biomass burning contribution was 22% at traffic sites, 30% at urban background sites and 28% at rural sites. Regarding soil dust, the average contribution was 5% and 8% at traffic and urban background sites respectively and 16% at rural sites. Sea salt contribution was low (1-4%) while secondary aerosols corresponded to the 16-34% of PM2.5. The homogeneity of the chemical profiles as well as their relationship with prevailing meteorological parameters were investigated. The results showed that fuel oil combustion, traffic non-exhausts and soil dust profiles are considered as dissimilar while biomass burning, sea salt and traffic exhaust can be characterized as relatively homogenous among the sites.
Collapse
Affiliation(s)
- D Saraga
- National Centre for Scientific Research 'Demokritos', Atmospheric Chemistry & Innovative Technologies Laboratory, 15310 Aghia Paraskevi, Athens, Greece.
| | - T Maggos
- National Centre for Scientific Research 'Demokritos', Atmospheric Chemistry & Innovative Technologies Laboratory, 15310 Aghia Paraskevi, Athens, Greece
| | - C Degrendele
- Masaryk University, RECETOX Centre, Kamenice 5, 625 00 Brno, Czech Republic
| | - J Klánová
- Masaryk University, RECETOX Centre, Kamenice 5, 625 00 Brno, Czech Republic
| | - M Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - D Kocman
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - T Kanduč
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - S Garcia Dos Santos
- Instituto de salud Carlos III, Área de Contaminación Atmosférica, Centro Nacional de Sanidad Ambiental, Ctra. Majadahonda a Pozuelo, 28220 Majadahonda, Madrid, Spain
| | - R Franco
- Instituto de salud Carlos III, Área de Contaminación Atmosférica, Centro Nacional de Sanidad Ambiental, Ctra. Majadahonda a Pozuelo, 28220 Majadahonda, Madrid, Spain
| | - P Morillo Gómez
- Instituto de salud Carlos III, Área de Contaminación Atmosférica, Centro Nacional de Sanidad Ambiental, Ctra. Majadahonda a Pozuelo, 28220 Majadahonda, Madrid, Spain
| | - M Manousakas
- National Centre for Scientific Research 'Demokritos', Environmental Radioactivity Laboratory, 15310 Aghia Paraskevi, Athens, Greece
| | - K Bairachtari
- National Centre for Scientific Research 'Demokritos', Atmospheric Chemistry & Innovative Technologies Laboratory, 15310 Aghia Paraskevi, Athens, Greece
| | - K Eleftheriadis
- National Centre for Scientific Research 'Demokritos', Environmental Radioactivity Laboratory, 15310 Aghia Paraskevi, Athens, Greece
| | - M Kermenidou
- Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), Environmental Engineering Laboratory, 54124 Thessaloniki, Greece
| | - S Karakitsios
- Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), Environmental Engineering Laboratory, 54124 Thessaloniki, Greece
| | - A Gotti
- Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), Environmental Engineering Laboratory, 54124 Thessaloniki, Greece
| | - D Sarigiannis
- Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), Environmental Engineering Laboratory, 54124 Thessaloniki, Greece
| |
Collapse
|
8
|
Belo J, Carreiro-Martins P, Papoila AL, Palmeiro T, Caires I, Alves M, Nogueira S, Aguiar F, Mendes A, Cano M, Botelho MA, Neuparth N. The impact of indoor air quality on respiratory health of older people living in nursing homes: spirometric and exhaled breath condensate assessments. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:1153-1158. [PMID: 31274053 DOI: 10.1080/10934529.2019.1637206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/16/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
In the Portuguese Geriatric Study of the Health Effects of Indoor Air Quality in Senior Nursing Homes, we aimed to evaluate the impact of indoor air contaminants on the respiratory symptoms and biomarkers in a sample of elderly living in nursing homes. A total of 269 elderly answered a health questionnaire, performed a spirometry and 150 out of these collected an exhaled breath condensate sample for pH and nitrites analysis. The study included the evaluation of indoor chemical and microbiological contaminants. The median age of the participants was 84 (78-87) years and 70.6% were women. The spirometric data indicated the presence of airway obstruction in 14.5% of the sample. Median concentrations of air pollutants did not exceed the existing standards, although increased peak values were observed. In the multivariable analysis, each increment of 100 µg/m3 of total volatile organic compounds was associated with the odds of respiratory infection in the previous three months ( OR̂ =1.05; 95% CI: 1.00-1.09). PM2.5 concentrations were inversely associated with pH values ( β̂ = -0.04, 95%: -0.06 to -0.01, for each increment of 10 µg/m3). Additionally, a direct and an inverse association were found between total bacteria and FEV1/FVC and FVC, respectively.
Collapse
Affiliation(s)
- Joana Belo
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa , Lisbon , Portugal
- Integrated Pathophysiological Mechanisms Research Group, Nova Medical School, CEDOC , Lisbon , Portugal
| | - Pedro Carreiro-Martins
- Integrated Pathophysiological Mechanisms Research Group, Nova Medical School, CEDOC , Lisbon , Portugal
- Serviço de Imunoalergologia, Hospital de Dona Estefânia, Centro Hospitalar de Lisboa Central, EPE , Lisbon , Portugal
| | - Ana L Papoila
- Epidemiology and Statistics Analysis Unit, Research Centre, Centro Hospitalar de Lisboa Central, EPE, CEAUL , Lisbon , Portugal
- NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa , Lisbon , Portugal
| | - Teresa Palmeiro
- CEDOC, Integrated Pathophysiological Mechanisms Research Group, Nova Medical School , Lisbon , Portugal
| | - Iolanda Caires
- Integrated Pathophysiological Mechanisms Research Group, Nova Medical School, CEDOC , Lisbon , Portugal
| | - Marta Alves
- Epidemiology and Statistics Analysis Unit, Research Centre, Centro Hospitalar de Lisboa Central, EPE, CEAUL , Lisbon , Portugal
| | - Susana Nogueira
- DINAMIÁCET - Centre for Socioeconomic and Territorial Studies, ISCTE, Lisbon University Institute , Lisbon , Portugal
| | - Fátima Aguiar
- Environmental Health Department, National Institute of Health Doutor Ricardo Jorge , Lisbon , Portugal
| | - Ana Mendes
- Environmental Health Department, National Institute of Health , Porto , Portugal
- Institute of Public Health (ISPUP), Porto University , Porto , Portugal
| | - Manuela Cano
- Environmental Health Department, National Institute of Health Doutor Ricardo Jorge , Lisbon , Portugal
| | - Maria A Botelho
- CEDOC, Integrated Pathophysiological Mechanisms Research Group, Nova Medical School , Lisbon , Portugal
| | - Nuno Neuparth
- Serviço de Imunoalergologia, Hospital de Dona Estefânia, Centro Hospitalar de Lisboa Central, EPE , Lisbon , Portugal
- CEDOC, Integrated Pathophysiological Mechanisms Research Group, Nova Medical School , Lisbon , Portugal
| |
Collapse
|
9
|
Saraga DE, Tolis EI, Maggos T, Vasilakos C, Bartzis JG. PM2.5 source apportionment for the port city of Thessaloniki, Greece. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2337-2354. [PMID: 30292125 DOI: 10.1016/j.scitotenv.2018.09.250] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/04/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
This paper aims to identify the chemical fingerprints of potential PM2.5 sources and estimate their contribution to Thessaloniki port-city's air quality. For this scope, Positive Matrix Factorization model was applied on a comprehensive PM2.5 dataset collected over a one-year period, at two sampling sites: the port and the city center. The model indicated six and five (groups of) sources contributing to particle concentration at the two sites, respectively. Traffic and biomass burning (winter months) comprise the major local PM sources for Thessaloniki (their combined contribution can exceed 70%), revealing two of the major control-demanding problems of the city. Shipping and in-port emissions have a non-negligible impact (average contribution to PM2.5: 9-13%) on both primary and secondary particles. Road dust factor presents different profile and contribution at the two sites (19.7% at the port; 7.4% at the city center). The secondary-particle factor represents not only the aerosol transportation over relatively long distances, but also a part of traffic-related pollution (14% at the port; 34% at the city center). The study aims to contribute to the principal role of quantitative information on emission sources (source apportionment) in port-cities for the implementation of the air quality directives and guidelines for public health.
Collapse
Affiliation(s)
- Dikaia E Saraga
- Environmental Research Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research "Demokritos", 15310 Ag. Paraskevi, Attiki, Greece; University of Western Macedonia, Department of Mechanical Engineering, Environmental Technology Laboratory, Sialvera & Bakola Street, 50100 Kozani, Greece.
| | - Evangelos I Tolis
- University of Western Macedonia, Department of Mechanical Engineering, Environmental Technology Laboratory, Sialvera & Bakola Street, 50100 Kozani, Greece
| | - Thomas Maggos
- Environmental Research Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research "Demokritos", 15310 Ag. Paraskevi, Attiki, Greece
| | - Christos Vasilakos
- Environmental Research Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research "Demokritos", 15310 Ag. Paraskevi, Attiki, Greece
| | - John G Bartzis
- University of Western Macedonia, Department of Mechanical Engineering, Environmental Technology Laboratory, Sialvera & Bakola Street, 50100 Kozani, Greece
| |
Collapse
|
10
|
Exposure to Particle Matters and Hazardous Volatile Organic Compounds in Selected Hot Spring Hotels in Guangdong, China. ATMOSPHERE 2016. [DOI: 10.3390/atmos7040054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|