1
|
García-Aróstegui JL, Baudron P, Robles-Arenas VM. Sampling methods may drive short-term groundwater nitrate variability in an irrigated watershed connected to a coastal lagoon (Campo de Cartagena-Mar Menor, SE Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169188. [PMID: 38081423 DOI: 10.1016/j.scitotenv.2023.169188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
This study highlights concerns regarding the reliability of groundwater nitrate data used in official surveys, such as within the EU-mandated Water Framework Directive (WFD). The focus is on the Campo de Cartagena - Mar Menor hydrosystem in Spain, a region known for its intensively irrigated watershed and eutrophicated lagoon, where monitoring the evolution of nitrate contamination in surface and groundwater is crucial but challenging due to the risk of inconsistent characterization leading to erratic remediation measures. The study employed an experimental approach in private wells that belong to a longstanding official nitrate survey network marked by irregular sampling practices. Importantly, these wells lacked comprehensive design documentation and were frequently used by farmers. The study aimed to evaluate the representativity of dissolved nitrate measurements in such an emblematic case, while investigating the source of the water using geochemical and isotope tracers. This assessment considered the effects of different sampling techniques (bailer or pumping) and sampling parameters (depth and time), acknowledging actual practices. The research highlights several key findings. Firstly, the bailer sampling method proved to account for a substantial portion of the observed variation in nitrate content. Secondly, in some cases, pumping introduced contributions from different water horizons, complicating the interpretation of nitrate data. Thirdly, alterations in the sampling protocol had a notable impact on the resulting nitrate measurements. Furthermore, the study emphasized a critical issue: the lack of analytical uncertainty estimation in official surveys introduces significant bias in result interpretation, with discrepancies exceeding 100 mg/L in four of the six wells analyzed. This underscores the pressing need for improved sampling protocols, dedicated borehole infrastructure and precise data interpretation. Given the potential unreliability of some official groundwater nitrate data shared under EU or other regulations, with corresponding economic and environmental impacts, the study recommends meticulous verification before transmitting data.
Collapse
Affiliation(s)
- José-Luis García-Aróstegui
- Instituto Geológico y Minero de España (IGME-CSIC), Gran Vía Escultor Francisco Salzillo, 23, 30005 Murcia, Spain; University of Murcia, Institute for Water and Environment, Campus de Espinardo, 30010 Murcia, Spain
| | - Paul Baudron
- Institut de Recherche pour le Développement, UMR G-EAU, 34090 Montpellier, France.
| | - Virginia María Robles-Arenas
- Instituto Geológico y Minero de España (IGME-CSIC), Gran Vía Escultor Francisco Salzillo, 23, 30005 Murcia, Spain; Department of Mining and Civil Engineering, Technical University of Cartagena, P° de Alfonso XIII 52, 30203 Cartagena, Spain
| |
Collapse
|
2
|
Howroyd M, Novakowski KS. Interpretation of a network-scale tracer experiment in fractured rock conducted using open wells. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 243:103907. [PMID: 34736081 DOI: 10.1016/j.jconhyd.2021.103907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/23/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
The presence of fractures in bedrock allows for rapid aqueous contaminant transport through complex pathways and for diffusion of solutes between the fractures and the matrix. To better understand transport in these settings, tracer experiments are a commonly used tool. The need for expensive multi-level wells to obtain depth-specific concentrations, however, significantly limits the cost efficiency. The primary objective of this study is to develop a method whereby a discrete fracture network approach can be used to simulate the results of a divergent tracer experiment conducted using open observation boreholes in a well-characterized dolostone over distances of 55 m to 242 m. The experiment was conducted using a fluorescent tracer which allowed for continuous concentration measurement with depth in each open observation well. Two numerical models were employed in the interpretation of the experiment. The first was a 1-D finite difference model focused on flow and transport in the observation wells and the second was a 3-D control-volume finite element model capable of simulating the entire fracture network. Through fitting the experimental data to simulations, the most important fractures for transport in the system were identified. The number of fractures that participated in transport was few relative to the number of fractures observed in core and in constant head test results. Heterogeneous distribution of the fracture apertures was determined to be the likely cause of the highly tortuous transport observed at the site. This study demonstrates that tracer experiments conducted using open observation boreholes and a downhole fluorometer can improve our understanding of large-scale transport in fractured rock, especially when analysed with multiple models, and compared to other measured properties such as matrix porosity, hydraulic aperture, and fracture orientation.
Collapse
Affiliation(s)
- M Howroyd
- Department of Civil Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - K S Novakowski
- Department of Civil Engineering, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
3
|
Groundwater Resources in the Main Ethiopian Rift Valley: An Overview for a Sustainable Development. SUSTAINABILITY 2021. [DOI: 10.3390/su13031347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In arid and semi-arid areas, human health and economic development depend on water availability, which can be greatly compromised by droughts. In some cases, the presence of natural contaminants may additionally reduce the availability of good quality water. This research analyzed the water resources and hydrochemical characteristics in a rural area of the central Main Ethiopian Rift Valley, particularly in the districts of Shashemene, Arsi Negelle, and Siraro. The study was developed using a census of the main water points (springs and wells) in the area and the sampling and physico-chemical analysis of the water, with particular regard to the fluoride concentration. In many cases, fluoride content exceeded the drinking water limits set by the World Health Organization, even in the absence of anthropogenic contamination. Two different aquifers were recognized: A shallow aquifer related to the eastern escarpment and highlands, and a deep aquifer in the lowland areas of the rift valley on the basis of compositional changes from Ca–Mg/HCO3 to Na–HCO3. The distribution of fluoride, as well as pH and EC values, showed a decrease from the center of the lowlands to the eastern highlands, with similar values closely aligned along an NNE/SSW trend. All these data contribute to creating awareness among and sharing information on the risks with rural communities and local governments to support the adequate use of the available water resources and to plan appropriate interventions to increase access to fresh water, aimed at the sustainable human and rural local development of the region.
Collapse
|
4
|
Groundwater Resources Assessment for Sustainable Development in South Sudan. SUSTAINABILITY 2020. [DOI: 10.3390/su12145580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The economic activities of South Sudan (East-Central Africa) are predominantly agricultural. However, food insecurity due to low agricultural production, connected with weather conditions and lack of water infrastructure and knowledge, is a huge problem. This study reports the results of a qualitative and quantitative investigation of underground and surface water in the area of Gumbo (east of Juba town) that aims to assure sustainable water management, reducing diseases and mortality and guaranteeing access to irrigation and drinking water. The results of the study demonstrate the peculiarity of surface and groundwater and the critical aspects to take into account for the water use, particularly due to the exceeding of limits suggested by the WHO and national regulation. The outcomes provide a contribution to the scientific overview on lithostratigraphic, hydrochemical and hydrogeological setting of a less-studied area, characterized by sociopolitical instability and water scarcity. This represents a first step for the improvement of water knowledge and management, for sustainable economic development and for social progress in this African region.
Collapse
|
5
|
Meteorological Variability and Groundwater Quality: Examples in Different Hydrogeological Settings. WATER 2020. [DOI: 10.3390/w12051297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rainfall and temperature variability causes changes in groundwater recharge that can also influence groundwater quality by different processes. The aim of this study is the analysis of the hydrogeochemical variations over time due to meteorological variability in two different study areas in Italy: an alluvial aquifer in the Piedmont Po plain and an alluvial-pyroclastic aquifer in the Campanian plain. The examined plains show groundwater with natural quality not satisfying the European drinking water standards, or anthropogenic contamination. The peculiar natural quality is due, in the Campanian plain, to the closeness of volcanic areas, and to the presence of reducing conditions. In Piedmont plain a test site is characterized by a point-source contamination by heavy metals, due to the presence of past industrial activities. In all the examined areas there is a diffuse nitrate contamination. The fluctuations of the ions As, F, Fe, Mn, Cr VI, NO3, and Cl were analyzed and compared, using statistical methods, with the variations over time in precipitation, temperature, and piezometric levels, sometimes significant. Results highlight the importance of the groundwater and meteorological monitoring and the key role of the recharge variation in the hydrogeochemical processes. The linking degree between rainfall/temperature variability and hydrogeochemistry is variable, in function of the typology of chemical species, their origin, and of the aquifer characteristics. The fluctuation of climate variables determines sudden changes in the geochemistry of shallow unconfined aquifers (e.g., in the Piedmont plain), while semiconfined or confined aquifers (e.g., in the Volturno-Regi Lagni plain) react with a greater delay to these variations. Moreover, natural quality is more affected by climatic variations than anthropogenic contamination, which is the result of multiple environmental and anthropic factors.
Collapse
|
6
|
Potential recharge areas of deep aquifers: an application to the Vercelli–Biella Plain (NW Italy). RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2019. [DOI: 10.1007/s12210-019-00782-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Lasagna M, De Luca DA. Evaluation of sources and fate of nitrates in the western Po plain groundwater (Italy) using nitrogen and boron isotopes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2089-2104. [PMID: 29177999 DOI: 10.1007/s11356-017-0792-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Diffuse nitrate pollution in groundwater is currently considered one of the major causes of water quality degradation. Determining the sources of nitrate contamination is an important first step for a better management of water quality. Thus, the isotopic composition of nitrate (δ15NNO3 and δ18ONO3) and boron (δ11B) were used to evaluate nitrate contamination sources and to identify geochemical processes occurring in the shallow and deep aquifers of the Turin-Cuneo plain (NW Italy). The study area is essentially an agricultural zone, where use of synthetic nitrogenous fertilizers and organic manure is a common practice and the connection to sewer services is locally lacking. Also livestock farming are highly developed. A groundwater sampling campaign was performed on 34 wells in the shallow aquifer and 8 wells in the deep aquifers, to analyze nitrate, chloride, boron, δ15NNO3, δ18ONO3 and δ11B. Isotope data of nitrate indicate that nitrate contamination in the Turin-Cuneo plain originates from mixtures of synthetic and organic sources, slightly affected by denitrification, and manure or septic tank effluents. Moreover, boron isotopes were used to discriminate further among the main anthropogenic sources of pollution. The analyses results confirm that both animal manure and domestic sewage, especially under the city of Turin, can contribute to the nitrate contamination. The isotope analysis was also used for the evaluation of denitrification and nitrification processes: contrary to expectations, a significant denitrification phenomenon was assessed only in the shallow unconfined aquifer, especially in the Poirino Plateau, the most contaminated sector of the study area.
Collapse
Affiliation(s)
- Manuela Lasagna
- Earth Sciences Department, Turin University, Via Valperga Caluso 35, 10125, Turin, Italy.
| | | |
Collapse
|
8
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
9
|
Atekwana EA, Geyer CJ. Spatial and temporal variations in the geochemistry of shallow groundwater contaminated with nitrate at a residential site. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:27155-27172. [PMID: 30022393 DOI: 10.1007/s11356-018-2714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
The concentrations of nitrate (NO3-), major ions, and dissolved inorganic carbon (DIC) and the stable carbon isotopes of DIC (δ13CDIC) in shallow groundwater below a 45 × 60 m residential property was investigated over a period of 38 months. Our aim was to identify the processes which control the spatial and temporal distribution of NO3- in the shallow groundwater and assess water-rock interactions linked to denitrification. Groundwater sampled quarterly from eight locations showed an average NO3- concentration of 36.8 mg/L and a range between 0.1 and 214.9 mg/L compared to the US EPA maximum contaminant level of 10 mg/L. Heterogeneity in nitrate distribution was from residential application of N-based fertilizers offsite and from onsite application on flower beds and for lawn care. The temporal behavior of nitrate at all eight groundwater locations was markedly different and independent of seasonal hydrologic variations. Nitrate attenuation was spatially controlled by heterogeneous denitrification and rain dilution near roof drains. Groundwater locations with active denitrification were characterized by higher DIC concentrations and lower δ13CDIC from organic carbon mineralization and by higher ionic concentrations from weathering of aquifer minerals. The variation in the relative standard deviations (RSD) of the measured parameters over space (RSD-s) and time (RSD-t) was highest for NO3- associated with variable spatiotemporal input and lowest for pH, pCO2, and δ13CDIC indirectly controlled by denitrification. Denitrification induced mineral weathering products such as DIC, Ca2+, Mg2+, and HCO3- showed medium to high RSD-s and RSD-t. The RSD-s and RSD-t were positively correlated (R2 = 0.85) with the RSD-s showing approximately twofold higher magnitude than RSD-t due to greater variability between monitoring wells locations than variability at each groundwater location over time. Nitrate contamination and denitrification represent important long-term driver of aquifer weathering and changes in groundwater geochemistry below residential communities.
Collapse
Affiliation(s)
- Eliot A Atekwana
- Department of Geological Sciences, University of Delaware, 101 Penny Hall, Newark, DE, 19716, USA.
| | - Christopher J Geyer
- Boone Pickens School of Geology, Oklahoma State University, 105 Noble Research Center, Stillwater, OK, 74078, USA
| |
Collapse
|