1
|
Harirchi S, Sar T, Ramezani M, Aliyu H, Etemadifar Z, Nojoumi SA, Yazdian F, Awasthi MK, Taherzadeh MJ. Bacillales: From Taxonomy to Biotechnological and Industrial Perspectives. Microorganisms 2022; 10:2355. [PMID: 36557608 PMCID: PMC9781867 DOI: 10.3390/microorganisms10122355] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
For a long time, the genus Bacillus has been known and considered among the most applicable genera in several fields. Recent taxonomical developments resulted in the identification of more species in Bacillus-related genera, particularly in the order Bacillales (earlier heterotypic synonym: Caryophanales), with potential application for biotechnological and industrial purposes such as biofuels, bioactive agents, biopolymers, and enzymes. Therefore, a thorough understanding of the taxonomy, growth requirements and physiology, genomics, and metabolic pathways in the highly diverse bacterial order, Bacillales, will facilitate a more robust designing and sustainable production of strain lines relevant to a circular economy. This paper is focused principally on less-known genera and their potential in the order Bacillales for promising applications in the industry and addresses the taxonomical complexities of this order. Moreover, it emphasizes the biotechnological usage of some engineered strains of the order Bacillales. The elucidation of novel taxa, their metabolic pathways, and growth conditions would make it possible to drive industrial processes toward an upgraded functionality based on the microbial nature.
Collapse
Affiliation(s)
- Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Mohaddaseh Ramezani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Habibu Aliyu
- Institute of Process Engineering in Life Science II: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Zahra Etemadifar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran
| | - Seyed Ali Nojoumi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Xianyang 712100, China
| | | |
Collapse
|
2
|
Potential Use of Native Yeasts to Produce Bioethanol and Other Byproducts from Black Sugarcane, an Alternative to Increment the Subsistence Farming in Northern Ecuador. SUSTAINABILITY 2021. [DOI: 10.3390/su131910924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The high consumption of energy, mainly in the automotive sector, is supplied by fossil fuels, which, when combusted, generate polluting gases leading to the great problem of climate change. This has led society to seek alternatives. Bioethanol is a biofuel that can be obtained from the fermentation of different raw materials rich in sucrose such as sugarcane, which can be mixed with gasoline and used to reduce polluting emissions. The following investigation focused on studying the efficiency of three selected native yeasts in the fermentation of black sugarcane POJ 27-14 variety juice to produce bioethanol and other byproducts of biotechnological interest. A comparison between the size of the inoculum of three selected native yeasts (Lev6, Lev9, and Lev30) and two reference commercial controls in the fermentation process was performed. The phylogenetic classification was carried out based on the analysis of the internal transcribed spacer 1 sequence, 5.8S ribosomal RNA, and internal transcribed spacer 2. Lev6 and Lev30 were classified as Saccharomyces cerevisiae, while Lev9 was Candida intermedia, with 99% nucleotide sequence identity. The results showed that the optimal growth temperature was 30 °C with constant agitation (200 rpm) for biomass production. The Lev30 strain presented the highest yield in the production of biomass from sugarcane juice fermentation, while the Lev6 strain presented the highest yield in ethanol production. Additionally, among native yeasts, Lev6 registered the highest ethanol concentration (Q) and volumetric productivity (Qp) values of 0.61 (g/L/h) and 43.92 g/L, respectively, which were comparable with the control yeasts. The gas chromatography coupled to mass spectrometry (GC-MS) indicated the presence of ethanol in all samples (98% to 99% relative percentages) along with some therapeutic substances such as (2-aziridinylethyl) amine and tetraacetyl-d-xylonic nitrile with greater efficiency than commercial controls from the alcoholic fermentation of black sugarcane juice.
Collapse
|
3
|
Improvement of Enzymatic Saccharification of Cellulose-Containing Raw Materials Using Aspergillus niger. Processes (Basel) 2021. [DOI: 10.3390/pr9081360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Enzymatic hydrolysis of cellulose-containing raw materials, using Aspergillus niger, were studied. Filter paper, secondary cellulose-containing or starch-containing raw materials, miscanthus cellulose after alkaline or acid pretreatment, and wood chip cellulose, were used as substrates. The study focused on a wild A. niger strain, treated, or not (control), by ultraviolet (UV) irradiations for 45, 60, or 120 min (UV45, UV60, or UV120), or by UV irradiation for 120 min followed by a chemical treatment with NaN3 + ItBr for 30 min or 80 min (UV120 + CH30 or UV120 + CH80). A mixture of all the A. niger strains (MIX) was also tested. A citrate buffer, at 50 mM, wasthe most suitable for enzymatic hydrolysis. As the UV exposure time increased to 2 h, the cellulase activity of the surviving culturewas increased (r = 0.706; p < 0.05). The enzymatic activities of the obtained strains, towards miscanthus cellulose, wood chips, and filter paper, were inferior to those obtained with commercial enzymes (8.6 versus 9.1 IU), in some cases. Under stationary hydrolysis at 37 °C, pH = 4.7, the enzymatic activity of A. niger UV120 + CH30 was 24.9 IU. The enzymatic hydrolysis of secondary raw materials, using treated A. niger strains, was themost effective at 37 °C. Similarly, the most effective treatment of miscanthus cellulose and wood chips occurred at 50 °C. The maximum conversion of cellulose to glucose was observed using miscanthus cellulose (with alkaline pretreatment), and the minimum conversion was observed when using wood chips. The greatest value of cellulase activity was evidenced in the starch-containing raw materials, indicating that A. niger can ferment not only through cellulase activity, but also via an amylolytic one.
Collapse
|
4
|
Wang S, Tian R, Liu B, Wang H, Liu J, Li C, Li M, Evivie SE, Li B. Effects of carbon concentration, oxygen, and controlled pH on the engineering strain Lactiplantibacillus casei E1 in the production of bioethanol from sugarcane molasses. AMB Express 2021; 11:95. [PMID: 34176008 PMCID: PMC8236424 DOI: 10.1186/s13568-021-01257-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/16/2021] [Indexed: 01/28/2023] Open
Abstract
Sugarcane molasses are considered a potential source for bioethanol's commercial production because of its availability and low market price. It contains high concentrations of fermentable sugars that can be directly metabolized by microbial fermentation. Heterofermentative lactic acid bacteria, especially Lactiplantibacillus casei, have a high potential to be a biocatalyst in ethanol production that they are characterized by strong abilities of carbohydrate metabolism, ethanol synthesis, and high alcohol tolerance. This study aimed to evaluate the feasibility of producing ethanol by Lactiplantibacillus casei used the ethanologen engineering strain L. casei E1 as a starter culture and cane molasses as substrate medium. The effects of environmental factors on the metabolism of L. casei E1 were analyzed by high-performance liquid chromatography (HPLC) system, and the gene expression of key enzymes in carbon source metabolism was detected using quantitative real-time PCR (RT-qPCR). Results showed that the strain could grow well, ferment sugar quickly in cane molasses. By fermenting this bacterium anaerobically at 37 °C for 36 h incubation in 5 °BX molasses when the fermenter's pH was controlled at 6.0, ethanol yield reached 13.77 g/L, and carbohydrate utilization percentage was 78.60%. RT-qPCR results verified the strain preferentially ferment glucose and fructose of molasses to ethanol at the molecular level. In addition, the metabolism of sugars, especially fructose, would be inhibited by elevating acidity. Our findings support the theoretical basis for exploring Lactic acid bacteria as a starter culture for converting sugarcane molasses into ethanol.
Collapse
Affiliation(s)
- Song Wang
- Food College, Northeast Agricultural University, Harbin, 150030, China
- Shandong Yuwang Ecological Food Industry Co., Ltd, Dezhou, 251200, Shandong, China
| | - Ran Tian
- Food College, Northeast Agricultural University, Harbin, 150030, China
| | - Buwei Liu
- Food College, Northeast Agricultural University, Harbin, 150030, China
| | - Hongcai Wang
- Shandong Yuwang Ecological Food Industry Co., Ltd, Dezhou, 251200, Shandong, China
| | - Jun Liu
- Shandong Yuwang Ecological Food Industry Co., Ltd, Dezhou, 251200, Shandong, China
| | - Chenghui Li
- Shandong Yuwang Ecological Food Industry Co., Ltd, Dezhou, 251200, Shandong, China
| | - Mingyue Li
- Shandong Yuwang Ecological Food Industry Co., Ltd, Dezhou, 251200, Shandong, China
| | - Smith Etareri Evivie
- Food College, Northeast Agricultural University, Harbin, 150030, China
- Department of Animal Science, Faculty of Agriculture, University of Benin, Benin City, 300001, Nigeria
- Department of Food Science and Human Nutrition, Faculty of Agriculture, University of Benin, Benin City, 300001, Nigeria
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
5
|
Solieri L. The revenge of Zygosaccharomyces yeasts in food biotechnology and applied microbiology. World J Microbiol Biotechnol 2021; 37:96. [PMID: 33969449 DOI: 10.1007/s11274-021-03066-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/28/2021] [Indexed: 12/01/2022]
Abstract
Non-conventional yeasts refer to a huge and still poorly explored group of species alternative to the well-known model organism Saccharomyces cerevisiae. Among them, Zygosaccharomyces rouxii and the sister species Zygosaccharomyces bailii are infamous for spoiling food and beverages even in presence of several food preservatives. On the other hand, their capability to cope with a wide range of process conditions makes these yeasts very attractive factories (the so-called "ZygoFactories") for bio-converting substrates poorly permissive for the growth of other species. In balsamic vinegar Z. rouxii is the main yeast responsible for converting highly concentrated sugars into ethanol, with a preference for fructose over glucose (a trait called fructophily). Z. rouxii has also attracted much attention for the ability to release important flavor compounds, such as fusel alcohols and the derivatives of 4-hydroxyfuranone, which markedly contribute to fragrant and smoky aroma in soy sauce. While Z. rouxii was successfully proposed in brewing for producing low ethanol beer, Z. bailii is promising for lactic acid and bioethanol production. Recently, several research efforts exploited omics tools to pinpoint the genetic bases of distinctive traits in "ZygoFactories", like fructophily, tolerance to high concentrations of sugars, lactic acid and salt. Here, I provided an overview of Zygosaccharomyces industrially relevant phenotypes and summarized the most recent findings in disclosing their genetic bases. I suggest that the increasing number of genomes available for Z. rouxii and other Zygosaccharomyces relatives, combined with recently developed genetic engineering toolkits, will boost the applications of these yeasts in biotechnology and applied microbiology.
Collapse
Affiliation(s)
- L Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy.
| |
Collapse
|
6
|
Salma A, Abdallah R, Fourcade F, Amrane A, Djelal H. A New Approach to Produce Succinic Acid Through a Co-Culture System. Appl Biochem Biotechnol 2021; 193:2872-2892. [PMID: 33937964 DOI: 10.1007/s12010-021-03572-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/08/2021] [Indexed: 01/04/2023]
Abstract
Microorganisms can produce a wide range of bio-based chemicals that can be used in various industrial applications as molecules of interest. In the present work, an analysis of the power production by pure culture, co-culture, and sequential culture was performed. In this study, both the mono-culture and the co-culture strategies of Actinobacillus succinogenes with Saccharomyces cerevisiae as carbon sources to produce succinic acid using glucose and fructose were examined. The cultures were performed in batch mode and a great attention was paid to the co-culture system to improve the biosynthetic pathway between A. succinogenes and S. cerevisiae by combining these two strains in a single fermentation process. Under microaerobic and anaerobic conditions, the process was characterized in terms of sugars concentration, cell density, metabolites, yield (mol-C products/ mol-C sugars), the temperature conditions for productivity, and pH. The results showed that the process could consume glucose and fructose and could adapt to different concentrations of the two sugars more quickly than by a single organism and the best results were obtained in a sequential co-culture recording 0.27 mol L-1 of succinic acid concentration and a volumetric productivity of 0.3 g L-1 h-1. Under the investigated operating conditions, the combination of these two strains in a single reactor produced a significant amount of succinic acid (0.70 mol-C SA/mol-C substrates). A simultaneous and sequential co-culture strategy can be a powerful new approach in the field of bio-based chemical production.
Collapse
Affiliation(s)
- Alaa Salma
- University Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR6226, F-3500, Rennes, France
| | - Rawa Abdallah
- Centre Azm pour la Recherche en Biotechnologie et ses Applications, Rue El Mitein, LBA3B, Universite Libanaise, EDST, Tripoli, Lebanon
| | - Florence Fourcade
- University Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR6226, F-3500, Rennes, France
| | - Abdeltif Amrane
- University Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR6226, F-3500, Rennes, France
| | - Hayet Djelal
- UniLaSalle-Ecole des Métiers de l'Environnement, Avenue Robert Schuman, Campus de Ker Lann, 35 170, Rennes, France.
| |
Collapse
|
7
|
Dakal TC, Dhabhai B. Current status of genetic & metabolic engineering and novel QTL mapping-based strategic approach in bioethanol production. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Demiray E, Karatay SE, Dönmez G. Improvement of bioethanol production from pomegranate peels via acidic pretreatment and enzymatic hydrolysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29366-29378. [PMID: 31396876 DOI: 10.1007/s11356-019-06020-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to improve the ethanol production from pomegranate peels (PPs). Therefore, the effect of enzymatic hydrolysis and different pretreatments on ethanol production by yeasts was examined. There were three different enzyme concentrations (3.6, 7.2, 14.4 FPU/g substrate) tested for enzymatic hydrolysis, and four different PP media, such as WSPP (whole slurry of PP), LFPP (liquid fraction of PP), WSFPP (washed solid fraction of PP) and N-WSFPP (non-washed solid fraction of PP), were prepared. Bioethanol production was monitored for 96 h. Maximum ethanol concentrations were obtained at WSPP medium as 12.69 g/L, 14.35 g/L and 4.23 g/L in Saccharomyces cerevisiae, Kluyveromyces marxianus and Pichia stipitis, respectively. On the other hand, the washing step of biomass increased the kinetic parameters dramatically and the highest theoretical ethanol yields and YP/S values were obtained from WSFPP medium in all tested yeasts. Theoretical ethanol yields were 97.8%, 98.7% and 35.5% for S. cerevisiae, K. marxianus and P. stipitis, respectively. Qp values were observed as 0.98 g/L h, 0.99 g/L h and 0.04 g/L h for the same yeasts. The highest YP/S values were detected as 0.50 g/g for S. cerevisiae, 0.50 g/g for K. marxianus and 0.30 g/g for P. stipitis in the washed pomegranate peel biomass.
Collapse
Affiliation(s)
- Ekin Demiray
- Department of Biology, Faculty of Science, Ankara University, Beşevler, 06100, Ankara, Turkey
| | - Sevgi Ertuğrul Karatay
- Department of Biology, Faculty of Science, Ankara University, Beşevler, 06100, Ankara, Turkey.
| | - Gönül Dönmez
- Department of Biology, Faculty of Science, Ankara University, Beşevler, 06100, Ankara, Turkey
| |
Collapse
|
9
|
Kechkar M, Sayed W, Cabrol A, Aziza M, Ahmed Zaid T, Amrane A, Djelal H. ISOLATION AND IDENTIFICATION OF YEAST STRAINS FROM SUGARCANE MOLASSES, DATES AND FIGS FOR ETHANOL PRODUCTION UNDER CONDITIONS SIMULATING ALGAL HYDROLYSATE. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190361s20180114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Madina Kechkar
- Centre de Développement des Energies Renouvelables, Algeria; Ecole Nationale Polytechnique, Algeria
| | | | | | - Majda Aziza
- Centre de Développement des Energies Renouvelables, Algeria
| | | | | | - Hayet Djelal
- UniLaSalle-Ecole des Métiers de l’Environnement, France
| |
Collapse
|
10
|
Jeguirim M, Limousy L. Process engineering for pollution control and waste minimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9827-9830. [PMID: 28382441 DOI: 10.1007/s11356-017-8936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Mejdi Jeguirim
- Institut de Science des Matériaux de Mulhouse, 15 Rue Jean Starcky, 68057, Mulhouse, France.
| | - Lionel Limousy
- Institut de Science des Matériaux de Mulhouse, 15 Rue Jean Starcky, 68057, Mulhouse, France
| |
Collapse
|