2
|
Marks KJ, Northstone K, Papadopoulou E, Brantsæter AL, Haug LS, Howards PP, Smarr MM, Flanders WD, Hartman TJ. Maternal dietary patterns during pregnancy and exposure to persistent endocrine disrupting chemicals in two European birth cohorts. ENVIRONMENTAL ADVANCES 2021; 6:10.1016/j.envadv.2021.100130. [PMID: 35979229 PMCID: PMC9380587 DOI: 10.1016/j.envadv.2021.100130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Food consumption, particularly of animal-based products, is considered the most important contributor to persistent endocrine disrupting chemical (EDC) exposure. This study aims to describe the association between maternal diet during pregnancy and exposure to persistent EDCs using dietary pattern analysis. This study is based on subsamples of the Avon Longitudinal Study of Parents and Children (ALSPAC) (N=422) and the Norwegian Mother, Father, and Child Cohort Study (MoBa) (N=276) which uses data from the Medical Birth Registry of Norway (MBRN). Women in both studies completed food frequency questionnaires (FFQs) during pregnancy, from which consumption data were categorized into 38 aggregated food groups. Maternal blood samples were collected during pregnancy and concentrations of perfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs) in serum/plasma were measured. Dietary patterns were identified using reduced rank regression, with blood EDC concentrations as response variables. Within ALSPAC, all patterns (PFAS, PCB, and OCP) were characterized by high consumption of meat, poultry, white fish, and biscuits. In MoBa, high consumption of sausages and burgers (representing processed meats), pasta, and chocolate bars characterized PCB and OCP dietary patterns, while high consumption of cheese characterized the PFAS pattern. Across both cohorts, PFAS patterns were characterized by high consumption of cheese, PCB patterns by high consumption of rice, and OCP patterns by poultry. Dietary patterns explained between 8 and 20% of the variation in serum EDC concentrations, with explained variance being the highest for PCBs in both cohorts. In conclusion, dietary patterns high in animal-based products appear to be associated with persistent EDC concentrations among pregnant women. Diet explains more variation in PCB concentrations than for other persistent EDC classes.
Collapse
Affiliation(s)
- Kristin J. Marks
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, Georgia 30322, United States
- National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, Georgia 30341, United States
- Oak Ridge Institute for Science and Education, 100 ORAU Way, Oak Ridge, Tennessee 37830, United States
| | - Kate Northstone
- Department of Population Health Sciences, Bristol Medical School, Oakfield House, Oakfield Grove, Bristol BS8 2BN, United Kingdom
| | - Eleni Papadopoulou
- Department of Environmental Health, Norwegian Institute of Public Health, P.O. Box 222, NO-0213 Skoyen, Oslo, Norway
| | - Anne Lise Brantsæter
- Department of Environmental Health, Norwegian Institute of Public Health, P.O. Box 222, NO-0213 Skoyen, Oslo, Norway
| | - Line Småstuen Haug
- Department of Environmental Health, Norwegian Institute of Public Health, P.O. Box 222, NO-0213 Skoyen, Oslo, Norway
| | - Penelope P. Howards
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, Georgia 30322, United States
| | - Melissa M. Smarr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, Georgia 30322, United States
| | - W. Dana Flanders
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, Georgia 30322, United States
- National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, Georgia 30341, United States
| | - Terryl J. Hartman
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, Georgia 30322, United States
- National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, Georgia 30341, United States
| |
Collapse
|
3
|
Kobayashi S, Sata F, Miyashita C, Miura R, Azumi K, Kobayashi S, Goudarzi H, Araki A, Ishizuka M, Todaka T, Kajiwara J, Hori T, Kishi R. Gender-specific association of exposure to non-dioxin-like polychlorinated biphenyls during pregnancy with methylation levels of H19 and long interspersed nuclear element-1 in cord blood in the Hokkaido study. Toxicology 2017; 390:135-145. [PMID: 28865728 DOI: 10.1016/j.tox.2017.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Associations between prenatal exposure to polychlorinated biphenyls (PCBs) and reduced birth-size, and between DNA methylation of insulin-like growth factor-2 (IGF-2), H19 locus, and long interspersed nuclear element-1 (LINE-1) and reduced birth-size are well established. To date, however, studies on the associations between prenatal exposure to PCBs and alterations in methylation of IGF-2, H19, and LINE-1 are lacking. Thus, in this study, we examined these associations with infant-gender stratification. METHODS We performed a prospective birth cohort study using the Sapporo cohort from the previously described Hokkaido Birth Cohort Study on Environment and Children's Health conducted between 2002 and 2005 in Japan. In the final 169 study participants included in this study, we measured the concentrations of various non-dioxin-like PCBs in maternal blood during pregnancy using high-resolution gas chromatography/high-resolution mass spectrometry. IGF-2, H19 and LINE-1 methylation levels in cord blood were measured using the bisulfite pyrosequencing methods Finally, we assessed the associations between prenatal exposure to various PCBs and the gene methylation levels using multiple regression models stratified by infant gender. RESULTS We observed a 0.017 (95% confidence interval [CI]: 0.003-0.031) increase in the log10-transformed H19 methylation levels (%) in cord blood for each ten-fold increase in the levels of decachlorinated biphenyls (decaCBs) in maternal blood among all infants. Similarly, a 0.005 (95% CI: 0.000-0.010) increase in the log10-transformed LINE-1 methylation levels (%) in cord blood was associated with each ten-fold increase in heptachlorinated biphenyls (heptaCBs) in maternal blood among all infants. In particular, we observed a dose-dependent association of the decaCB levels in maternal blood with the H19 methylation levels among female infants (P value for trend=0.040); likewise a dose-dependent association of heptaCB levels was observed with LINE-1 methylation levels among female infants (P value for trend=0.015). Moreover, these associations were only observed among infants of primiparous women. CONCLUSION Our results suggest that the dose-dependent association between prenatal exposure to specific non-dioxin-like PCBs and increases in the H19 and LINE-1 methylation levels in cord blood might be more predominant in females than in males.
Collapse
Affiliation(s)
- Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Fumihiro Sata
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan; Health Center, Chuo University, 42-8, Ichigaya-Hommura-cho, Shinjuku-ku, Tokyo 162-8473, Japan.
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Ryu Miura
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Kaoru Azumi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Sachiko Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Houman Goudarzi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan; Department of Respiratory Medicine, Hokkaido University Graduate School of Medicine, North-15, West-7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| | - Atsuko Araki
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, North-18, West-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.
| | - Takashi Todaka
- Kitakyushu Life Science Center, 1-4, Nakabaru-shinmachi, Tobata-ku, Kitakyushu, Fukuoka 804-0003, Japan.
| | - Jumboku Kajiwara
- Fukuoka Institute of Health and Environmental Sciences, Mukaizano 39, Dazaifu, Fukuoka 818-0135, Japan.
| | - Tsuguhide Hori
- Fukuoka Institute of Health and Environmental Sciences, Mukaizano 39, Dazaifu, Fukuoka 818-0135, Japan.
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan.
| |
Collapse
|