1
|
Li X, He X, Ling Y, Bai Z, Liu C, Liu X, Jia K. In-situ growth of silver nanoparticles on sulfonated polyarylene ether nitrile nanofibers as super-wetting antibacterial oil/water separation membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
2
|
Hussein AK, Elbeih A, Mokhtar M, Abdelhafiz M. Spun of improvised cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5-D]-Imidazole (BCHMX) in polystyrene nanofibrous membrane by electrospinning techniques. BMC Chem 2022; 16:59. [PMID: 35945603 PMCID: PMC9364567 DOI: 10.1186/s13065-022-00853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022] Open
Abstract
Development of ultra-fine fiber technology and nano-sized materials are widely taking place to enhance the characteristic of different materials. In our study, a newly developed technique was used to produce improvised nano energetic fibers with the exploitation of cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5-d] imidazole (BCHMX) to spin in a polystyrene nanofiber membrane. Scanning electron microscopy (SEM) showed the synthesized nanofibrous polystyrene (PS)/BCHMX sheets with clear and continual fiber were imaged with scanning electron microscopy (SEM). Characterization of the produced nanofiber was examined by Fourier Transform Infrared (FTIR), and X-ray diffractometer (XRD). Explosive sensitivity was also evaluated by both BAM impact and friction apparatus. Thermal behavior for the synthesized PS/BCHMX fiber and the pure materials were also investigated by thermal gravimetric analysis (TGA). The results show enhancement in the fabrication of nano energetic fibers with a size of 200-460 nm. The TG confirms the high weight percentage of BCHMX which reaches 60% of the total mass. PS/BCHMX fiber was confirmed with the XRD, FTIR spectrum. Interestingly, XRD sharp peaks showed the conversion of amorphous PS via electrospinning into crystalline shape regarding the applied high voltage. The synthesized PS/BCHMX nanofiber was considered insensitive to the mechanical external stimuli; more than 100 J impact energy and > 360 N initiation force as friction stimuli. PS/BCHMX is considering a candidate tool to deal with highly sensitive explosives safely and securely for explosives detection training purposes.
Collapse
Affiliation(s)
| | - Ahmed Elbeih
- Military Technical College, Kobry Elkobbah, Cairo, Egypt.
| | | | | |
Collapse
|
3
|
Abdelhafiz M, Shalaby ASA, Hussein AK. Preparation and characterization of bioactive polyvinylpyrrolidone film via electrospinning technique. Microsc Res Tech 2022; 85:3347-3355. [DOI: 10.1002/jemt.24189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023]
|
4
|
Priya S, Murali A, Preeth DR, Dharanibalaji KC, Jeyajothi G. Green synthesis of silver nanoparticle-embedded poly(methyl methacrylate-co-methacrylic acid) copolymer for fungal-free leathers. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03714-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Chien HW, Tsai MY, Kuo CJ, Lin CL. Well-Dispersed Silver Nanoparticles on Cellulose Filter Paper for Bacterial Removal. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:595. [PMID: 33673629 PMCID: PMC7997195 DOI: 10.3390/nano11030595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022]
Abstract
In this study, a polydopamine (PDA) and polyethyleneimine (PEI)-assisted approach was developed to generate well-distributed PDA/PEI/silver (PDA/PEI/Ag) nanocomplexes on the surfaces of commercial cellulose filter papers to achieve substantial bacterial reduction under gravity-driven filtration. PDA can bind to cellulose paper and act as a reducer to produce silver nanoparticles (AgNPs), while PEI can react with oxidative dopamine and act as a dispersant to avoid the aggregation of AgNPs. The successful immobilization of PDA/PEI/Ag nanocomplexes was confirmed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were used as pathogen models to test the efficacy of the PDA/PEI/Ag nanocomplex-incorporated filter papers. The PDA/PEI/Ag nanocomplex-incorporated filter papers provided a substantial bacterial removal of up to 99% by simple gravity filtration. This work may be useful to develop a feasible industrial production process for the integration of biocidal AgNPs into cellulose filter paper and is recommended as a local-condition water-treatment technology to treat microbial-contaminated drinking water.
Collapse
Affiliation(s)
- Hsiu-Wen Chien
- Department of Chemical and Material Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan; (M.-Y.T.); (C.-L.L.)
- Photo-Sensitive Material Advanced Research and Technology Center (Photo-SMART Center), National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan;
| | - Ming-Yen Tsai
- Department of Chemical and Material Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan; (M.-Y.T.); (C.-L.L.)
| | - Chia-Jung Kuo
- Photo-Sensitive Material Advanced Research and Technology Center (Photo-SMART Center), National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan;
| | - Ching-Lo Lin
- Department of Chemical and Material Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan; (M.-Y.T.); (C.-L.L.)
| |
Collapse
|
6
|
Abstract
This review paper examines the current state-of-the-art in fabrication of aligned fibers via electrospinning techniques and the effects of these techniques on the mechanical and dielectric properties of electrospun fibers. Molecular orientation, system configuration to align fibers, and post-drawing treatment, like hot/cold drawing process, contribute to better specific strength and specific stiffness properties of nanofibers. The authors suggest that these improved, aligned nanofibers, when applied in composites, have better mechanical and dielectric properties for many structural and multifunctional applications, including advanced aerospace applications and energy storage devices. For these applications, most fiber alignment electrospinning research has focused on either mechanical property improvement or dielectric property improvement alone, but not both simultaneously. Relative to many other nanofiber formation techniques, the electrospinning technique exhibits superior nanofiber formation when considering cost and manufacturing complexity for many situations. Even though the dielectric property of pure nanofiber mat may not be of general interest, the analysis of the combined effect of mechanical and dielectric properties is relevant to the present analysis of improved and aligned nanofibers. A plethora of nanofibers, in particular, polyacrylonitrile (PAN) electrospun nanofibers, are discussed for their mechanical and dielectric properties. In addition, other types of electrospun nanofibers are explored for their mechanical and dielectric properties. An exploratory study by the author demonstrates the relationship between mechanical and dielectric properties for specimens obtained from a rotating mandrel horizontal setup.
Collapse
|
7
|
Effects of Technical Textiles and Synthetic Nanofibers on Environmental Pollution. Polymers (Basel) 2021; 13:polym13010155. [PMID: 33401538 PMCID: PMC7794755 DOI: 10.3390/polym13010155] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 01/20/2023] Open
Abstract
Textile manufacturing has been one of the highest polluting industrial sectors. It represents about one-fifth of worldwide industrial water pollution. It uses a huge number of chemicals, numerous of which are carcinogenic. The textile industry releases many harmful chemicals, such as heavy metals and formaldehyde, into water streams and soil, as well as toxic gases such as suspended particulate matter and sulphur dioxide to air. These hazardous wastes, may cause diseases and severe problems to human health such as respiratory and heart diseases. Pollution caused by the worldwide textile manufacturing units results in unimaginable harm, such as textile polymers, auxiliaries and dyes, to the environment. This review presents a systematic and comprehensive survey of all recently produced high-performance textiles; and will therefore assist a deeper understanding of technical textiles providing a bridge between manufacturer and end-user. Moreover, the achievements in advanced applications of textile material will be extensively studied. Many classes of technical textiles were proved in a variety of applications of different fields. The introductory material- and process-correlated identifications regarding raw materials and their transformation into yarns, fibers and fabrics followed by dyeing, printing, finishing of technical textiles and their further processing will be explored. Thus, the environmental impacts of technical textiles on soil, air and water are discussed.
Collapse
|
8
|
Dutta T, Chattopadhyay AP, Ghosh NN, Khatua S, Acharya K, Kundu S, Mitra D, Das M. Biogenic silver nanoparticle synthesis and stabilization for apoptotic activity; insights from experimental and theoretical studies. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01216-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Ocimum tenuiflorum leaf extract as a green mediator for the synthesis of ZnO nanocapsules inactivating bacterial pathogens. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01177-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Chromolaena odorata extract as a green agent for the synthesis of Ag@AgCl nanoparticles inactivating bacterial pathogens. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-01033-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Raza MA, Islam A, Sabir A, Gull N, Ali I, Mehmood R, Bae J, Hassan G, Khan MU. PVA/TEOS crosslinked membranes incorporating zinc oxide nanoparticles and sodium alginate to improve reverse osmosis performance for desalination. J Appl Polym Sci 2019. [DOI: 10.1002/app.47559] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Muhammad Asim Raza
- Department of Polymer Engineering & Technology; University of the Punjab; 54590, Lahore Pakistan
- Department of Ocean System Engineering; Jeju National University; 102 Jejudaehakro, Jeju 63243 South Korea
| | - Atif Islam
- Department of Polymer Engineering & Technology; University of the Punjab; 54590, Lahore Pakistan
| | - Aneela Sabir
- Department of Polymer Engineering & Technology; University of the Punjab; 54590, Lahore Pakistan
| | - Nafisa Gull
- Department of Polymer Engineering & Technology; University of the Punjab; 54590, Lahore Pakistan
| | - Israr Ali
- Department of Polymer Engineering & Technology; University of the Punjab; 54590, Lahore Pakistan
| | - Rashid Mehmood
- Department of Polymer Engineering & Technology; University of the Punjab; 54590, Lahore Pakistan
| | - Jinho Bae
- Department of Ocean System Engineering; Jeju National University; 102 Jejudaehakro, Jeju 63243 South Korea
| | - Gul Hassan
- Department of Ocean System Engineering; Jeju National University; 102 Jejudaehakro, Jeju 63243 South Korea
| | - Muhammad Umair Khan
- Department of Ocean System Engineering; Jeju National University; 102 Jejudaehakro, Jeju 63243 South Korea
| |
Collapse
|
12
|
Ben Arfi R, Karoui S, Mougin K, Ghorbal A. Cetyltrimethylammonium bromide-treated Phragmites australis powder as novel polymeric adsorbent for hazardous Eriochrome Black T removal from aqueous solutions. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2648-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Zhang X, Peng X, Yang T, Zou H, Liang M, Shi G, Yan W. Amidoximation of cross-linked polyacrylonitrile fiber and its highly selective gallium recovery from Bayer liquor. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2551-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Zhao Y, Mo H, Jiang X, Han B, Feng F, Wang D, Fu L, He L, Zhang J, Shen J. Thermal stability and thermal oxidation kinetics of PU/CA-MMT composites. J Appl Polym Sci 2018. [DOI: 10.1002/app.47002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Y. Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, College of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 Jiangsu China
| | - H. Mo
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, College of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 Jiangsu China
| | - X. Jiang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, College of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 Jiangsu China
| | - B. Han
- School of Material Engineering; Nanjing Institute of Technology; Nanjing 211167 Jiangsu China
| | - F. Feng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, College of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 Jiangsu China
| | - D. Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, College of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 Jiangsu China
| | - L. Fu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, College of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 Jiangsu China
| | - L. He
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, College of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 Jiangsu China
| | - J. Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, College of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 Jiangsu China
| | - J. Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, College of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 Jiangsu China
| |
Collapse
|
15
|
Cichosz S, Masek A, Wolski K, Zaborski M. Universal approach of cellulose fibres chemical modification result analysis via commonly used techniques. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2487-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|