1
|
Müller L, Zehetmeier A, Höfling A, Gaß H, Voß J, Krappmann D, Rockmann L, Harrer E, Zahn D, Hirsch A, Halik M. Tailorable Nanoparticles for Magnetic Water Cleaning of Polychlorinated Biphenyls. SMALL METHODS 2025:e2500537. [PMID: 40342282 DOI: 10.1002/smtd.202500537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/28/2025] [Indexed: 05/11/2025]
Abstract
Anthropogenic persistent organic pollutants pose a pressing threat to the environment and human health. They can be found in water bodies all around the world at low but hazardous concentrations. Typical representatives of this contaminant class are polychlorinated biphenyls (PCBs). Here, nanoparticulate core-shell water cleaning agents are presented, which are able to remove PCBs of various chlorination degrees from water. The core consists of superparamagnetic iron oxide nanoparticles (SPIONs) providing a large surface area that can be tuned via self-assembled monolayers (SAMs) composed of phosphonic acid derivates. This shell binds the pollutants non-covalently enabling facile magnetic water remediation. By employing positively charged or hydrophobic SAMs different PCBs can be preferentially removed. Furthermore, these orthogonal functionalities can be integrated into one SPION system. By combining charged and hydrophobic phosphonic acid derivates in so-called binary SAMs the removal preference can be convoluted, which works just as well in real river water. The cost-efficient availability of the base materials for these tailorable nanoparticles is complemented with recyclability laying the foundation for a sustainable water cleaning process.
Collapse
Affiliation(s)
- Lukas Müller
- Organic Materials & Devices, Institute of Polymer Materials, Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Anna Zehetmeier
- Organic Materials & Devices, Institute of Polymer Materials, Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Anna Höfling
- Organic Materials & Devices, Institute of Polymer Materials, Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Henrik Gaß
- Organic Materials & Devices, Institute of Polymer Materials, Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Johannes Voß
- Organic Materials & Devices, Institute of Polymer Materials, Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Daniel Krappmann
- Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Linda Rockmann
- Organic Materials & Devices, Institute of Polymer Materials, Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Elias Harrer
- Computer Chemistry Center, Chair of Theoretical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Dirk Zahn
- Computer Chemistry Center, Chair of Theoretical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Andreas Hirsch
- Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Marcus Halik
- Organic Materials & Devices, Institute of Polymer Materials, Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| |
Collapse
|
2
|
Sanli GE, Tasdemir Y. Accumulations and temporal trends of polychlorinated biphenyls (PCBs) in olive tree components. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:2577-2594. [PMID: 34347211 DOI: 10.1007/s10653-021-01046-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, ambient air samples, olive tree branches (1- and 2-year-old) and their leaves (particulate and dissolved phase) were collected simultaneously between January and December months at a suburban site of Bursa-Turkey. Total polychlorinated biphenyl (PCB) concentrations, sampled by employing passive air samplers, ranged from 0.03 to 0.08 ng/m3 in the atmosphere. The average annual total PCB concentrations belonging to the tree components were 1.14 ± 0.32 ng/g DM in dissolved phase in leaves, 0.71 ± 0.32 ng/g DM in particle phase on leaves, 1.06 ± 0.25 ng/g DM in 1-year-old branches, and 0.93 ± 0.23 ng/g DM in 2-year-old branches. It was determined that the correlation between PCB concentrations in olive tree components and the air was low. This result indicated that besides the tree-air exchange, other possible factors (such as soil-to-tree transitions, wind effect, etc.) affect the levels of PCB concentrations in the tree components. Total PCB concentrations decreased from summer to winter in all samples. The percentage ratio of PCB in the dissolved phase in the leaves was generally higher than other tree components in seasons. PCB homologous distributions indicated 5-CBs were dominant in the tree components and 3-CBs were dominant in the air samples. Highly chlorinated PCB congeners (8-CBs and 9-CBs) were found at low concentrations in both air and tree components samples. The samples indicated that the ratio of PCBs in tree components to the total (tree component+ambient air) PCBs slightly increased with increasing the chlorine number.
Collapse
Affiliation(s)
- Gizem Eker Sanli
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, 16059, Nilüfer/Bursa, Turkey
| | - Yücel Tasdemir
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, 16059, Nilüfer/Bursa, Turkey.
| |
Collapse
|
3
|
Eti NA, Flor S, Iqbal K, Scott RL, Klenov VE, Gibson-Corley KN, Soares MJ, Ludewig G, Robertson LW. PCB126 induced toxic actions on liver energy metabolism is mediated by AhR in rats. Toxicology 2022; 466:153054. [PMID: 34848246 PMCID: PMC8748418 DOI: 10.1016/j.tox.2021.153054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 02/01/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor involved in the regulation of biological responses to more planar aromatic hydrocarbons, like TCDD. We previously described the sequence of events following exposure of male rats to a dioxin-like polychlorinated biphenyl (PCB) congener, 3,3',4,4',5-pentachlorobiphenyl (PCB126), that binds avidly to the AhR and causes various types of toxicity including metabolic syndrome, fatty liver, and disruption of energy homeostasis. The purpose of this study was, to investigate the role of AhR to mediate those toxic manifestations following sub-acute exposure to PCB126 and to examine possible sex differences in effects. For this goal, we created an AhR knockout (AhR-KO) model using CRISPR/Cas9. Comparison was made to the wild type (WT) male and female Holtzman Sprague Dawley rats. Rats were injected with a single IP dose of corn oil vehicle or 5 μmol/kg PCB126 in corn oil and necropsied after 28 days. PCB126 caused significant weight loss, reduced relative thymus weights, and increased relative liver weights in WT male and female rats, but not in AhR-KO rats. Similarly, significant pathologic changes were visible which included necrosis and regeneration in female rats, micro- and macro-vesicular hepatocellular vacuolation in males, and a paucity of glycogen in livers of both sexes in WT rats only. Hypoglycemia and lower IGF1, and reduced serum non-esterified fatty acids (NEFAs) were found in serum of both sexes of WT rats, low serum cholesterol levels only in the females, and no changes in AhR-KO rats. The expression of genes encoding enzymes related to xenobiotic metabolism (e.g. CYP1A1), gluconeogenesis, glycogenolysis, and fatty acid oxidation were unaffected in the AhR-KO rats following PCB126 exposure as opposed to WT rats where expression was significantly upregulated (PPARα, females only) or downregulated suggesting a disrupted energy homeostasis. Interestingly, Acox2, Hmgcs, G6Pase and Pc were affected in both sexes, the gluconeogenesis and glucose transporter genes Pck1, Glut2, Sds, and Crem only in male WT-PCB rats. These results show the essential role of the AhR in glycogenolysis, gluconeogenesis, and fatty acid oxidation, i.e. in the regulation of energy production and homeostasis, but also demonstrate a significant difference in the effects of PCB126 in males verses females, suggesting higher vulnerability of glucose homeostasis in males and more changes in fatty acid/lipid homeostasis in females. These differences in effects, which may apply to more/all AhR agonists, should be further analyzed to identify health risks to specific groups of highly exposed human populations.
Collapse
Affiliation(s)
- Nazmin Akter Eti
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, United States
| | - Susanne Flor
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States
| | - Khursheed Iqbal
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Regan L Scott
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Violet E Klenov
- Department of Ob/Gyn, University of Iowa, Iowa City, IA, United States
| | - Katherine N Gibson-Corley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, United States
| | - Michael J Soares
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Gabriele Ludewig
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, United States
| | - Larry W Robertson
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
4
|
Hubai K, Kováts N, Sainnokhoi TA, Teke G. Accumulation pattern of polycyclic aromatic hydrocarbons using Plantago lanceolata L. as passive biomonitor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7300-7311. [PMID: 34476695 PMCID: PMC8763834 DOI: 10.1007/s11356-021-16141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
Biomonitors are considered a cheap alternative of active air samplers, especially where spatial pattern of air quality is to be monitored, requiring numerous parallel measurements. Of higher plants, Plantago lanceolata L. has been proven a good monitor species with proper accumulation capacity. While biomonitoring studies are difficult to compare due to inherent errors such as the diverse plant material used in different studies, the No. 227 OECD GUIDELINE FOR THE TESTING OF CHEMICALS: Terrestrial Plant Test: Vegetative Vigour Test provides a tool to test extract of aerosol samples under controlled laboratory conditions. In our study, this guideline was followed to experimentally treat Plantago with the aqueous extract of a diesel exhaust sample. Accumulation pattern of polyaromatic hydrocarbons (PAHs) was assessed and compared to samples collected in the field. Unlike most studies reported in the literature, both in the experimentally treated and field Plantago samples, high ratio of high molecular weight PAHs was experienced. Distribution pattern of accumulated PAHs showed strong correlation between the experimentally treated sample and most of the field plantain samples, underlying the usefulness of laboratory treatments for bioaccumulation studies.
Collapse
Affiliation(s)
- Katalin Hubai
- Centre of Natural Sciences, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary
| | - Nora Kováts
- Centre of Natural Sciences, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary.
| | - Tsend-Ayush Sainnokhoi
- Centre of Natural Sciences, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary
- School of Veterinary Medicine, Mongolian University of Life Sciences, Khan-Uul district, Zaisan, Ulaanbaatar, 17042, Mongolia
| | - Gábor Teke
- ELGOSCAR-2000 Environmental Technology and Water Management Ltd., Balatonfuzfo, 8184, Hungary
| |
Collapse
|
5
|
Herzig R, Lohmann N, Meier R. Temporal change of the accumulation of persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) in lichens in Switzerland between 1995 and 2014. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10562-10575. [PMID: 30762185 DOI: 10.1007/s11356-019-04236-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to assess the temporal change of atmospheric deposition patterns of persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) in Switzerland between 1995 and 2014 by a passive biomonitoring with lichens. Lichen tissues sampled at 16 representative sites in the same season of 1995 and 2014 were analyzed for a total of 94 individual and 27 sum parameters of POPs and PAHs by means of gas chromatography-mass spectrometry (GC/MS). The comparative analyses showed a decrease of 40 to 80% (medians) for most of the POPs and PAHs concentration in lichens at all site categories. Reduction in tissue concentration of the polychlorinated dibenzo-p-dioxins/furans (PCDD/PCDFs), such as the highly toxic 2,3,7,8-TetraCDD and the TEQ according to WHO (2005) were 66% and 73%, respectively. For the dioxin- and non-dioxin-like PCBs, a decrease of 67% and 58% was found. The average decrease of 30 organochlorine pesticides and insecticides (OCPs) was 65%, with a 94% decrease for lindane. For the 27 PAHs and for benzo(a)pyrene, an average decrease of 58% and 59% was found. Polybrominated diphenyl ethers (PBDE) showed reduced concentrations in lichens at rural and agglomeration sites, but an increase of contamination was observed at industrial and road traffic sites. The direct comparison of changes of POPs and PAHs concentrations in lichens and of emissions between 1995 and 2014 revealed consistent results. The results of this study highlight for the first time in biota the positive effect of emission regulation of POPs in Switzerland.
Collapse
Affiliation(s)
- Rolf Herzig
- Arbeitsgemeinschaft für Bioindikation, Umweltbeobachtung und ökologische Planung, Quartiergasse 12, 3013, Bern, Switzerland.
| | | | - Reto Meier
- Air Pollution Control and Chemicals Division, Swiss Federal Office for the Environment (FOEN), Bern, Switzerland
| |
Collapse
|
6
|
Weber R, Herold C, Hollert H, Kamphues J, Ungemach L, Blepp M, Ballschmiter K. Life cycle of PCBs and contamination of the environment and of food products from animal origin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16325-16343. [PMID: 29589245 DOI: 10.1007/s11356-018-1811-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/19/2018] [Indexed: 04/16/2023]
Abstract
This report gives a summary of the historic use, former management and current release of polychlorinated biphenyls (PCBs) in Germany and assesses the impact of the life cycle of PCBs on the contamination of the environment and of food products of animal origin. In Germany 60,000 t of PCBs were used in transformers, capacitors or as hydraulic oils. The use of PCB oils in these "closed applications", has been banned in Germany in 2000. Thirty to 50% of these PCBs were not appropriately managed. In West Germany, 24,000 t of PCBs were used in open applications, mainly as additive (plasticiser, flame retardant) in sealants and paints in buildings and other construction. The continued use in open applications has not been banned, and in 2013, an estimated more than 12,000 t of PCBs were still present in buildings and other constructions. These open PCB applications continuously emit PCBs into the environment with an estimated release of 7-12 t per year. This amount is in agreement with deposition measurements (estimated to 18 t) and emission estimates for Switzerland. The atmospheric PCB releases still have an relevant impact on vegetation and livestock feed. In addition, PCBs in open applications on farms are still a sources of contamination for farmed animals. Furthermore, the historic production, use, recycling and disposal of PCBs have contaminated soils along the lifecycle. This legacy of contaminated soils and contaminated feed, individually or collectively, can lead to exceedance of maximum levels in food products from animals. In beef and chicken, soil levels of 5 ng PCB-TEQ/kg and for chicken with high soil exposure even 2 ng PCB-TEQ/kg can lead to exceedance of EU limits in meat and eggs. Areas at and around industries having produced or used or managed PCBs, or facilities and areas where PCBs were disposed need to be assessed in respect to potential contamination of food-producing animals. For a large share of impacted land, management measures applicable on farm level might be sufficient to continue with food production. Open PCB applications need to be inventoried and better managed. Other persistent and toxic chemicals used as alternatives to PCBs, e.g. short chain chlorinated paraffins (SCCPs), should be assessed in the life cycle for exposure of food-producing animals and humans.
Collapse
Affiliation(s)
- Roland Weber
- POPs Environmental Consulting, Lindenfirststraße 23, 73527, Schwäbisch Gmünd, Germany.
| | - Christine Herold
- POPs Environmental Consulting, Lindenfirststraße 23, 73527, Schwäbisch Gmünd, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, 52074, Aachen, Germany
| | - Josef Kamphues
- Institute of Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Linda Ungemach
- Institute of Animal Science, University of Hohenheim, 70593, Stuttgart, Germany
| | | | | |
Collapse
|
7
|
Robertson LW, Weber R, Nakano T, Johansson N. PCBs risk evaluation, environmental protection, and management: 50-year research and counting for elimination by 2028. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16269-16276. [PMID: 29934860 PMCID: PMC6033322 DOI: 10.1007/s11356-018-2467-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/31/2018] [Indexed: 05/27/2023]
Affiliation(s)
| | - Roland Weber
- POPs Environmental Consulting, Schwäbisch Gmünd, Germany
| | - Takeshi Nakano
- Osaka University, Research Center for Environmental Preservation, Osaka, Japan
| | | |
Collapse
|
8
|
Weber R, Herold C, Hollert H, Kamphues J, Blepp M, Ballschmiter K. Reviewing the relevance of dioxin and PCB sources for food from animal origin and the need for their inventory, control and management. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:42. [PMID: 30464877 PMCID: PMC6224007 DOI: 10.1186/s12302-018-0166-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/06/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND In the past, cases of PCDD/F and PCB contamination exceeding limits in food from animal origin (eggs, meat or milk) were mainly caused by industrially produced feed. But in the last decade, exceedances of EU limit values were discovered more frequently for PCDD/Fs or dioxin-like(dl)-PCBs from free range chicken, sheep, and beef, often in the absence of any known contamination source. RESULTS The German Environment Agency initiated a project to elucidate the entry of PCBs and PCDD/Fs in food related to environmental contamination. This paper summarizes the most important findings. Food products from farm animals sensitive to dioxin/PCB exposure-suckling calves and laying hens housed outdoor-can exceed EU maximum levels at soil concentrations that have previously been considered as safe. Maximum permitted levels can already be exceeded in beef/veal when soil is contaminated around 5 ng PCB-TEQ/kg dry matter (dm). For eggs/broiler, this can occur at a concentration of PCDD/Fs in soil below 5 ng PCDD/F-PCB-TEQ/kg dm. Egg consumers-especially young children-can easily exceed health-based guidance values (TDI). The soil-chicken egg exposure pathway is probably the most sensitive route for human exposure to both dl-PCBs and PCDD/Fs from soil and needs to be considered for soil guidelines. The study also found that calves from suckler cow herds are most prone to the impacts of dl-PCB contamination due to the excretion/accumulation via milk. PCB (and PCDD/F) intake for free-range cattle stems from feed and soil. Daily dl-PCB intake for suckler cow herds must in average be less than 2 ng PCB-TEQ/day. This translates to a maximum concentration in grass of 0.2 ng PCB-TEQ/kg dm which is less than 1/6 of the current EU maximum permitted level. This review compiles sources for PCDD/Fs and PCBs relevant to environmental contamination in respect to food safety. It also includes considerations on assessment of emerging POPs. CONCLUSIONS The major sources of PCDD/F and dl-PCB contamination of food of animal origin in Germany are (1) soils contaminated from past PCB and PCDD/F releases; (2) PCBs emitted from buildings and constructions; (3) PCBs present at farms. Impacted areas need to be assessed with respect to potential contamination of food-producing animals. Livestock management techniques can reduce exposure to PCDD/Fs and PCBs. Further research and regulatory action are needed to overcome gaps. Control and reduction measures are recommended for emission sources and new listed and emerging POPs to ensure food safety.
Collapse
Affiliation(s)
- Roland Weber
- POPs Environmental Consulting, Lindenfirststraße 23, 73527 Schwäbisch Gmünd, Germany
| | - Christine Herold
- POPs Environmental Consulting, Lindenfirststraße 23, 73527 Schwäbisch Gmünd, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Josef Kamphues
- Institute of Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | | | | |
Collapse
|