1
|
Clebot AC, Fernandez ME, Magni FV, Repetti MR, Zalazar CS. Bio-transformation of poultry litter and activated sewage sludge to produce biomixtures for the remediation of water polluted with pesticides. CHEMOSPHERE 2024; 365:143264. [PMID: 39236926 DOI: 10.1016/j.chemosphere.2024.143264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The aim of this study was to formulate novel biomixtures with the ability to dissipate globally used pesticides. For this, an effective stabilization of two wastes, poultry litter and activated sewage sludge, was achieved through a combination of composting and vermicomposting, with the aid of the earthworm Eisenia fetida. Hence, two different mixtures were prepared combining the wastes with and without the addition of sewage sludge, and their physicochemical and microbiological characterization was examined during both processes. Earthworms reproduction was promoted by more than fourteen times the initial number of individuals introduced. This step made it possible to obtain substrates rich in organic matter, stable and non-pathogenic. The resulting vermicomposted substrates (V-C1 and V-C2) were used to produce two different biomixtures with wheat stubble (WS) and soil (S): SWSV-C1 and SWSV-C2, and they were tested for the remediation of a solution of five pesticides (2,4-D, cypermethrin, imidacloprid, acetochlor and dimethoate) in a 119-days assay. Comparisons were made with a WS-only biomixture (SWS) and a soil control. All biomixtures were more successful in dissipating the pesticides than soil; 2,4-D, dimethoate, and acetochlor degradation reached more than 99% in the three biomixtures after 28-56 days of assay. Biomixtures containing either vermicomposts acted faster than SWS, particularly for 2,4-D, dimethoate and cypermethrin. The total microbial activity was found to be higher in the two biomixtures containing vermicompost, which can be linked to their enhanced performance in the degradation of pesticides. Although the germination of Lactuca sativa proved that neither of the three spent biomixtures were phytotoxic at the end (germination index >60%), only SWSV-C1 and SWSV-C2 proved to be safe for the survival of E. fetida. This work confirms that vermicompost improves the success of biomixtures, not only in terms of pesticide removal, but also providing non-toxic spent biomixtures.
Collapse
Affiliation(s)
- Aldana Carolina Clebot
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC, UNL-CONICET), Ruta Nacional 168 Km 0, 3000, Santa Fe, Argentina; Facultad de Ciencias de la Salud-UCSF, Echagüe 7151, 3000, Santa Fe, Argentina
| | - Maria Emilia Fernandez
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC, UNL-CONICET), Ruta Nacional 168 Km 0, 3000, Santa Fe, Argentina.
| | - Florencia Valentina Magni
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), FIQ-UNL, 3000, Santa Fe, Argentina
| | - Maria Rosa Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), FIQ-UNL, 3000, Santa Fe, Argentina
| | - Cristina Susana Zalazar
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC, UNL-CONICET), Ruta Nacional 168 Km 0, 3000, Santa Fe, Argentina; Departamento de Medioambiente, FICH-UNL, Ruta Nacional 168 Km 0, Ciudad Universitaria, 3000, Santa Fe, Argentina
| |
Collapse
|
2
|
Serbent MP, Magario I, Saux C. Immobilizing white-rot fungi laccase: Toward bio-derived supports as a circular economy approach in organochlorine removal. Biotechnol Bioeng 2024; 121:434-455. [PMID: 37990982 DOI: 10.1002/bit.28591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/23/2023] [Accepted: 10/28/2023] [Indexed: 11/23/2023]
Abstract
Despite their high persistence in the environment, organochlorines (OC) are widely used in the pharmaceutical industry, in plastics, and in the manufacture of pesticides, among other applications. These compounds and the byproducts of their decomposition deserve attention and efficient proposals for their treatment. Among sustainable alternatives, the use of ligninolytic enzymes (LEs) from fungi stands out, as these molecules can catalyze the transformation of a wide range of pollutants. Among LEs, laccases (Lac) are known for their efficiency as biocatalysts in the conversion of organic pollutants. Their application in biotechnological processes is possible, but the enzymes are often unstable and difficult to recover after use, driving up costs. Immobilization of enzymes on a matrix (support or solid carrier) allows recovery and stabilization of this catalytic capacity. Agricultural residual biomass is a passive environmental asset. Although underestimated and still treated as an undesirable component, residual biomass can be used as a low-cost adsorbent and as a support for the immobilization of enzymes. In this review, the adsorption capacity and immobilization of fungal Lac on supports made from residual biomass, including compounds such as biochar, for the removal of OC compounds are analyzed and compared with the use of synthetic supports. A qualitative and quantitative comparison of the reported results was made. In this context, the use of peanut shells is highlighted in view of the increasing peanut production worldwide. The linkage of methods with circular economy approaches that can be applied in practice is discussed.
Collapse
Affiliation(s)
- Maria Pilar Serbent
- Centro de Investigación y Tecnología Química (CITeQ), Facultad Regional Córdoba, Universidad Tecnológica Nacional (CONICET), Córdoba, Argentina
- Programa de Pós-Graduação em Ciências Ambientais (PPGCAMB), Universidade do Estado de Santa Catarina, Lages, Santa Catarina, Brasil
| | - Ivana Magario
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (CONICET), Córdoba, Argentina
| | - Clara Saux
- Centro de Investigación y Tecnología Química (CITeQ), Facultad Regional Córdoba, Universidad Tecnológica Nacional (CONICET), Córdoba, Argentina
| |
Collapse
|
3
|
Saez JM, González SK, Ocante TAL, Bigliardo AL, Briceño GE, Benimeli CS. Actinobacteria bioaugmentation and substrate evaluation for biobeds useful for the treatment of atrazine residues in agricultural fields. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115870. [PMID: 36056489 DOI: 10.1016/j.jenvman.2022.115870] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/27/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Biopurification systems (BPS) or biobeds are bioprophylaxis systems to prevent pesticide point-source contamination, whose efficiency relies mostly on the pesticide removal capacity of the biomixture, the majority component of a BPS. The adaptation of the components of the biomixtures to local availabilities is a key aspect to ensure the sustainability of the system. In this work, the removal of atrazine (ATZ) was evaluated in biomixtures formulated with three sugarcane by-products as alternative lignocellulosic substrates. Based on the capacity of actinobacteria to tolerate and degrade diverse pesticides, the effect of biomixtures bioaugmentation with actinobacteria was evaluated as a strategy to enhance the depuration capacity of biobeds. Also, the effect of ATZ and/or the bioaugmentation on microbial developments and enzymatic activities were studied. The biomixtures formulated with bagasse, filter cake, or harvest residue, reached pesticide removal values of 37-41% at 28 d of incubation, with t1/2 between 37.9 ± 0.4 d and 52.3 ± 0.4 d. The bioaugmentation with Streptomyces sp. M7 accelerated the dissipation of the pesticide in the biomixtures, reducing ATZ t1/2 3-fold regarding the controls, and achieving up to 72% of ATZ removal. Atrazine did not exert a clear effect on microbial developments, although most of the microbial counts were less in the contaminated biomixtures at the end of the assay. The bioaugmentation improved the development of the microbiota in general, specially actinobacteria and fungi, regarding the non-bioaugmented systems. The inoculation with Streptomyces sp. M7 enhanced acid phosphatase activity and/or reversed a possible effect of the pesticide over this enzymatic activity.
Collapse
Affiliation(s)
- Juliana M Saez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, Tucumán, 4000, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, Tucumán, 4000, Argentina
| | - Samanta K González
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, Tucumán, 4000, Argentina
| | - Teresa A L Ocante
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, Tucumán, 4000, Argentina
| | - Ana L Bigliardo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, Tucumán, 4000, Argentina
| | - Gabriela E Briceño
- Centro de Excelencia en Investigación Biotecnológica Aplicada al medio Ambiente (CIBAMA), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, 4780000, Chile
| | - Claudia S Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, Tucumán, 4000, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Av. Belgrano 300, Catamarca, 4700, Argentina.
| |
Collapse
|
4
|
Goh MS, Lam SD, Yang Y, Naqiuddin M, Addis SNK, Yong WTL, Luang-In V, Sonne C, Ma NL. Omics technologies used in pesticide residue detection and mitigation in crop. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126624. [PMID: 34329083 DOI: 10.1016/j.jhazmat.2021.126624] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
In agriculture, the convenience and efficacy of chemical pesticides have become inevitable to manage cultivated crop production. Here, we review the worldwide use of pesticides based on their categories, mode of actions and toxicity. Excessive use of pesticides may lead to hazardous pesticide residues in crops, causing adverse effects on human health and the environment. A wide range of high-tech-analytical methods are available to analyse pesticide residues. However, they are mostly time-consuming and inconvenient for on-site detection, calling for the development of biosensors that detect cellular changes in crops. Such new detection methods that combine biological and physicochemical knowledge may overcome the shortage in current farming to develop sustainable systems that support environmental and human health. This review also comprehensively compiles domestic pesticide residues removal tips from vegetables and fruits. Synthetic pesticide alternatives such as biopesticide and nanopesticide are greener to the environment. However, its safety assessment for large-scale application needs careful evaluation. Lastly, we strongly call for reversions of pesticide application trends based on the changing climate, which is lacking in the current scenario.
Collapse
Affiliation(s)
- Meng Shien Goh
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Su Datt Lam
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, United Kingdom
| | - YaFeng Yang
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Mohd Naqiuddin
- Malaysian Palm Oil Board, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Siti Nor Khadijah Addis
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wilson Thau Lym Yong
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Kantharawichai, Maha Sarakham 44150, Thailand
| | - Christian Sonne
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Danish Centre for Environment and Energy (DCE), Frederiksborgvej 399, POBox 358, DK-4000 Roskilde, Denmark.
| | - Nyuk Ling Ma
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
5
|
Domínguez-Rodríguez VI, Baltierra-Trejo E, Gómez-Cruz R, Adams RH. Microbial growth in biobeds for treatment of residual pesticide in banana plantations. PeerJ 2021; 9:e12200. [PMID: 34616634 PMCID: PMC8464193 DOI: 10.7717/peerj.12200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/02/2021] [Indexed: 11/20/2022] Open
Abstract
Background High doses of ethylenebisdithiocarbamate (EBDC) are used in banana production, and unused pesticide mixture (solution) is often disposed of improperly. This can result in soil and water contamination and present an undue risk to rural communities and the environment. An alternative to reduce the environmental impacts caused by pesticide residues is the biobeds treatment. It is necessary to establish if the composition of the proposed biomixtures supports microbial activity to degrade pesticides in biobeds. This research aimed to evaluate the EBDC effect on the distribution and abundance of microbial populations in polluted biomixtures . Methods For this purpose, a biomixture based on banana stem, mulch, and Fluvisol soil (50:25:25% v/v) was prepared and polluted with 1,000 mg L-1 EBDC. The response variables kinetics were determined every 14 days for three months, such as pH, organic matter, moisture, cation exchange capacity, microbial colonies, and cell counts at three depths within the experimental units. Results EBDC reduced the number of microbial colonies by 72%. Bacterial cells rapidly decreased by 69% and fungi 89% on the surface, while the decrease was gradual and steady at the middle and bottom of the biobed. The microbial populations stabilized at day 42, and the bacteria showed a total recovery on day 84, but the fungi slightly less. At the end of the experiment, the concentration of EBDC in the biomixture was 1.3-4.1 mg L-1. A correlation was found between fungal count (colonies and cells) with EBDC concentration. A replacement of the biomixture is suggested if the bacterial population becomes less than 40 × 106 CFU mL-1 and the fungal population less than 8 × 104 CFU mL-1 or if the direct cell count becomes lower than 50 × 104 cells mL-1 in bacteria and 8 × 102 cells mL-1 in fungi. Conclusion The biomixture based on banana stem supports the microbial activity necessary for the degradation of the EBDC pesticide. It was found that fungi could be used as indicators of the pollutant degradation process in the biomixtures. Microbial counts were useful to establish the mobility and degradation time of the pesticide and the effectiveness of the biomixture. Based on the results, it is appropriate to include the quantification of microbial populations to assess the effectiveness of pesticide degradation and the maturity level of the biomixture.
Collapse
Affiliation(s)
| | - Eduardo Baltierra-Trejo
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico.,Catédras CONACyT, Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| | - Rodolfo Gómez-Cruz
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Randy H Adams
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| |
Collapse
|
6
|
Córdova-Méndez EA, Góngora-Echeverría VR, González-Sánchez A, Quintal-Franco C, Giácoman-Vallejos G, Ponce-Caballero C. Pesticide treatment in biobed systems at microcosms level under critical moisture and temperature range using an Orthic Solonchaks soil from southeastern Mexico amended with corn husk as support. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145038. [PMID: 33581523 DOI: 10.1016/j.scitotenv.2021.145038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Agriculture effluents from cleaning and handling equipment used in pesticide applications can contaminate superficial and groundwater sources when not correctly disposed of. Biobeds using soil enriched with amendments represent a viable technology to control and minimize pesticide pollution of soil and water in farmlands. They are usually installed outdoors without protection, making them vulnerable to rain flooding, lack of moisture, drought, and intense heat or cold. Temperature (T) and moisture (M) of the biomixture are considered two of the most important physical factor affecting pesticide dissipation. This study aimed to evaluate the effect of T and M on the dissipation of five of the most used pesticides (carbofuran, atrazine, 2,4-D, diazinon, and glyphosate) in Yucatan State, Mexico. Three experiments using miniaturized biobeds considering optimal temperature and moisture (T of 30 ± 2 °C and 90% water holding capacity [WHC]) were performed. The optimal dissipation time and the effect of T, M variations, and volatilization was determined. The optimal dissipation time was over 14 days. Carbofuran was the least dissipated pesticide and glyphosate the most. The primary factor affecting pesticide dissipation was T (P < 0.05), reaching rates of dissipation of 99% at 45 °C. Variations of M in the biomixture were not significant on pesticide dissipation (P > 0.05). The white-rot fungi were observed; its presence was related to increments of T. Head Space analysis (at 45 °C) showed low pesticide volatilization (≤0.03%) for all pesticide used were quantified; water vapor condensation could reduce the pesticide volatilization for experimental conditions.
Collapse
Affiliation(s)
- Edgar A Córdova-Méndez
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes por Periférico Norte, Apdo. Postal 150, Cordemex, CP 97310 Mérida, Yucatán, Mexico
| | - Virgilio R Góngora-Echeverría
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes por Periférico Norte, Apdo. Postal 150, Cordemex, CP 97310 Mérida, Yucatán, Mexico.
| | - Avel González-Sánchez
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes por Periférico Norte, Apdo. Postal 150, Cordemex, CP 97310 Mérida, Yucatán, Mexico
| | - Carlos Quintal-Franco
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes por Periférico Norte, Apdo. Postal 150, Cordemex, CP 97310 Mérida, Yucatán, Mexico
| | - Germán Giácoman-Vallejos
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes por Periférico Norte, Apdo. Postal 150, Cordemex, CP 97310 Mérida, Yucatán, Mexico
| | - Carmen Ponce-Caballero
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes por Periférico Norte, Apdo. Postal 150, Cordemex, CP 97310 Mérida, Yucatán, Mexico.
| |
Collapse
|
7
|
Domínguez-Rodríguez VI, Obrador-Olán JJ, Zavala-Cruz J, Baltierra-Trejo E, Ramos-Herrera S, Rosique-Gil JE, Adams RH. Substrate evaluation for biobeds in the degradation of ethylene bis-dithiocarbamate in wastewater from pesticide application in banana. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:193-203. [PMID: 34150229 PMCID: PMC8172760 DOI: 10.1007/s40201-020-00595-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
The efficacy of biobeds was evaluated by testing three agricultural residues (sugarcane top, banana stem, and eucalyptus chip) as substrates for the degradation of ethylene bis-dithiocarbamate (EBDC) and ethylene thiourea (ETU) in wastewater from banana spraying. Acrylic columns with a capacity to treat 1 L/ea. of wastewater were used as experimental units. Each unit was filled with different proportions of the test substrate (30%, 50% and 70% v/v) and the difference in volume was made up of equal parts of sugar cane cachasse and Fluvisol soil. Subsequently, the units were contaminated with suspensions of 878 mgL-1 of EBDC, and the dose was repeated periodically. The ETU concentration and leachate toxicity were evaluated every month for six months. The mixtures with 30% sugarcane top and 50% eucalyptus chip gave the best results, with leachable ETU concentrations down to a level protective of the environment, and toxicity down to background levels or nearly so. This was only found in mixtures with a high C:N ratio (20-25), thus, the effectiveness of the biobeds appears to be related to high lignolytic activity. .
Collapse
Affiliation(s)
- Verónica Isidra Domínguez-Rodríguez
- Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Biológicas, Carr. Villahermosa-Cárdenas km 0.5 Entronque Bosques de Saloya, 86150 Villahermosa, Tabasco Mexico
| | - José Jesús Obrador-Olán
- Colegio de Postgraduados, Campus Tabasco, Periférico Carlos A. Molina s/n Carr. Cárdenas-Huimanguillo km 3.5, H. Cárdenas, 86500 Cárdenas, Tabasco Mexico
| | - Joel Zavala-Cruz
- Colegio de Postgraduados, Campus Tabasco, Periférico Carlos A. Molina s/n Carr. Cárdenas-Huimanguillo km 3.5, H. Cárdenas, 86500 Cárdenas, Tabasco Mexico
| | - Eduardo Baltierra-Trejo
- Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Biológicas, Carr. Villahermosa-Cárdenas km 0.5 Entronque Bosques de Saloya, 86150 Villahermosa, Tabasco Mexico
- CONACyT-Universidad Juárez Autónoma de Tabasco. Laboratorio de Remediación, División Académica de Ciencias Biológicas, Villahermosa, Mexico
| | - Sergio Ramos-Herrera
- Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Biológicas, Carr. Villahermosa-Cárdenas km 0.5 Entronque Bosques de Saloya, 86150 Villahermosa, Tabasco Mexico
| | - José Edmundo Rosique-Gil
- Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Biológicas, Carr. Villahermosa-Cárdenas km 0.5 Entronque Bosques de Saloya, 86150 Villahermosa, Tabasco Mexico
| | - Randy Howard Adams
- Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Biológicas, Carr. Villahermosa-Cárdenas km 0.5 Entronque Bosques de Saloya, 86150 Villahermosa, Tabasco Mexico
| |
Collapse
|
8
|
Herrera‐Gallardo BE, Guzmán‐Gil R, Colín‐Luna JA, García‐Martínez JC, León‐Santiesteban HH, González‐Brambila OM, González‐Brambila MM. Atrazine biodegradation in soil by
Aspergillus niger
. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.23924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Raymundo Guzmán‐Gil
- Departamento de Energía Universidad Autónoma Metropolitana, Unidad Azcapotzalco Ciudad de México Mexico
| | - José A. Colín‐Luna
- Departamento de Energía Universidad Autónoma Metropolitana, Unidad Azcapotzalco Ciudad de México Mexico
| | - Julio C. García‐Martínez
- Departamento de Energía Universidad Autónoma Metropolitana, Unidad Azcapotzalco Ciudad de México Mexico
| | | | | | | |
Collapse
|
9
|
Góngora-Echeverría VR, García-Escalante R, Rojas-Herrera R, Giácoman-Vallejos G, Ponce-Caballero C. Pesticide bioremediation in liquid media using a microbial consortium and bacteria-pure strains isolated from a biomixture used in agricultural areas. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110734. [PMID: 32464440 DOI: 10.1016/j.ecoenv.2020.110734] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms' role in pesticide degradation has been studied widely. Insitu treatments of effluents containing pesticides such as biological beds (biobeds) are efficient biological systems where biomixture (mixture of substrates) and microorganisms are the keys in pesticide treatment; however, microbial activity has been studied poorly, and its potential beyond biobeds has not been widely explored. In this study, the capacity of microbial consortium and bacteria-pure strains isolated from a biomixture (soil-straw; 1:1, v/v) used to treat agricultural effluents under real conditions were evaluated during a bioremediation process of five pesticides commonly used Yucatan Mexico. Atrazine, carbofuran, and glyphosate had the highest degradations (>90%) using the microbial consortium; 2,4-D and diazinon were the most persistent (DT50 = 8.64 and 6.63 days). From the 21 identified bacteria species in the microbial consortium, Pseudomonas nitroreducens was the most abundant (52%) according to identified sequences. For the pure strains evaluation 2,4-D (DT50 = 9.87 days), carbofuran (DT50 = 8.27 days), diazinon (DT50 = 8.80 days) and glyphosate (DT50 = 8.59 days) were less persistent in the presence of the mixed consortium (Ochrobactrum sp. DGG-1-3, Ochrobactrum sp. Ge-14, Ochrobactrum sp. B18 and Pseudomonas citronellolis strain ADA-23B). Time, pesticide, and strain type were significant (P < 0.05) in pesticide degradation, so this process is multifactorial. Microbial consortium and pure strains can be used to increase the biobed efficiency by inoculation, even in the remediation of soil contaminated by pesticides in agricultural areas.
Collapse
Affiliation(s)
- Virgilio R Góngora-Echeverría
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias No Contaminantes por Anillo Periférico Norte S/n. Apdo. Postal 150 Cordemex. Cd, Mérida, Yucatán, Mexico.
| | - Rodrigo García-Escalante
- Instituto Tecnológico de Conkal, Avenida Tecnológico S/n Apdo, Postal 97345, Conkal, Yucatán, Mexico
| | | | - Germán Giácoman-Vallejos
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias No Contaminantes por Anillo Periférico Norte S/n. Apdo. Postal 150 Cordemex. Cd, Mérida, Yucatán, Mexico
| | - Carmen Ponce-Caballero
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias No Contaminantes por Anillo Periférico Norte S/n. Apdo. Postal 150 Cordemex. Cd, Mérida, Yucatán, Mexico
| |
Collapse
|
10
|
Tortella GR, Cuozzo S, Diez MC, Rodríguez-Rodríguez CE, Durán P, Masís-Mora M, Parada J, Rubilar O. Pesticide dissipation capacity of an organic biomixture used in the agriculture exposed to copper oxychloride. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110121. [PMID: 31896474 DOI: 10.1016/j.ecoenv.2019.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Affiliation(s)
- G R Tortella
- Facultad de Ingeniería Ciencias y Administración, Departamento de Ingeniería Química, Universidad de La Frontera, Temuco, Chile; Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Casilla 54-D, Temuco, Chile; Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Casilla 54-D, Temuco, Chile.
| | - S Cuozzo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, T40001MVB, Tucumán, Argentina.
| | - M C Diez
- Facultad de Ingeniería Ciencias y Administración, Departamento de Ingeniería Química, Universidad de La Frontera, Temuco, Chile; Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | - C E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - P Durán
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | - M Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - J Parada
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | - O Rubilar
- Facultad de Ingeniería Ciencias y Administración, Departamento de Ingeniería Química, Universidad de La Frontera, Temuco, Chile; Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| |
Collapse
|
11
|
Lescano MR, Pizzul L, Castillo MDP, Zalazar CS. Glyphosate and aminomethylphosphonic acid degradation in biomixtures based on alfalfa straw, wheat stubble and river waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 228:451-457. [PMID: 30245269 DOI: 10.1016/j.jenvman.2018.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/24/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
The aim of the work was to evaluate novel biomixtures for their use on biopurification systems (BPS) in Argentina also called biobeds. Glyphosate and aminomethylphosphonic acid (AMPA) degradation was evaluated on biomixtures containing local materials: alfalfa straw (As), wheat stubble (Ws), river waste (Rw) and soil. Glyphosate, AMPA concentrations and biological activity were followed with time. Soil was used as control. Glyphosate initial concentration was 1000 mg kg-1. Glyphosate disappeared almost completely after 63 days in all tested biomixtures. For Ws, WsRw and AsRw glyphosate degradation was around 99% and for As 85%. The biomixture Ws showed the highest glyphosate degradation rate. In all cases AMPA was formed and degraded to concentrations between 60 and 100 mg kg-1. In the control with only soil, glyphosate was degraded 53% and AMPA concentration at the end of the test was 438 mg kg-1. We conclude that alfalfa straw, wheat stubble and river waste are local materials that can be used in the preparation of biomixtures since they showed higher glyphosate degradation capacity and less AMPA accumulation compared to the soil alone. Also, the presence of river waste did enhance the water retention capacity.
Collapse
Affiliation(s)
- M R Lescano
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC, UNL-CONICET), 3000, Santa Fe, Argentina
| | - L Pizzul
- RISE- Research Institutes of Sweden, Uppsala, S-750 07, Sweden
| | - M D P Castillo
- RISE- Research Institutes of Sweden, Uppsala, S-750 07, Sweden
| | - C S Zalazar
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC, UNL-CONICET), 3000, Santa Fe, Argentina; Dep. Medioambiente, FICH-UNL, Ciudad Universitaria, 3000, Santa Fe, Argentina.
| |
Collapse
|
12
|
Góngora-Echeverría VR, Quintal-Franco C, Arena-Ortiz ML, Giácoman-Vallejos G, Ponce-Caballero C. Identification of microbial species present in a pesticide dissipation process in biobed systems using typical substrates from southeastern Mexico as a biomixture at a laboratory scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:528-538. [PMID: 29453182 DOI: 10.1016/j.scitotenv.2018.02.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Biobed systems are an important option to control point pollution in agricultural areas. Substrates used and microbial diversity present in a biomixture perform an essential function in pesticide dissipation. In this study, the effects of soil (50% of volume/volume [V/V] proportion for all biomixtures) and four soil-based biomixtures (miniaturized biobeds; addition of novel substrates from southeastern Mexico) on dissipation of high concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D), atrazine, carbofuran, diazinon, and glyphosate and on microbial diversity in biomixtures were evaluated. Small residual amounts of all pesticides at 20 (<2%) and 41 (<1%) days were observed; however, the lowest efficiency rates were observed in soil. Glyphosate was the only pesticide that completely dissipated in soil and biomixtures. Archaea, bacteria, and fungi were identified in biobeds, with bacteria being the most diverse microorganisms according to the identified species. The presence of white-rot fungi (normally related to pesticide degradation in biomixtures) was observed. Effects of the pesticide type and of biomixtures on pesticide dissipation were significant (P<0.05); however, only the effect of biomixtures on microbial diversity was significant (P<0.05); microbial diversity and richness had a significant effect on the residual amount of pesticides (P<0.05). Microbial diversity in terms of phyla was directly related to physicochemical parameters such as organic matter, lignin, water-holding capacity, and pH of soil and biomixtures.
Collapse
Affiliation(s)
- Virgilio R Góngora-Echeverría
- Facultad de Ingeniería, Universidad Autónoma de Yucatán; Av. Industrias no Contaminantes por Anillo Periférico Norte s/n, Apdo, Postal 150 Cordemex, Cd., Mérida, Yucatán, Mexico.
| | - Carlos Quintal-Franco
- Facultad de Ingeniería, Universidad Autónoma de Yucatán; Av. Industrias no Contaminantes por Anillo Periférico Norte s/n, Apdo, Postal 150 Cordemex, Cd., Mérida, Yucatán, Mexico
| | - María Leticia Arena-Ortiz
- Laboratorio de Estudios Ecogenómicos, Unidad de Ciencias y Tecnología de la UNAM en Yucatán, Parque Científico y Tecnológico de Yucatán, Carretera Sierra Papacal-Chuburná Puerto Km 5.1, 97302 Mérida, Yucatán, Mexico
| | - Germán Giácoman-Vallejos
- Facultad de Ingeniería, Universidad Autónoma de Yucatán; Av. Industrias no Contaminantes por Anillo Periférico Norte s/n, Apdo, Postal 150 Cordemex, Cd., Mérida, Yucatán, Mexico
| | - Carmen Ponce-Caballero
- Facultad de Ingeniería, Universidad Autónoma de Yucatán; Av. Industrias no Contaminantes por Anillo Periférico Norte s/n, Apdo, Postal 150 Cordemex, Cd., Mérida, Yucatán, Mexico
| |
Collapse
|