1
|
Zhou H, Guo S, Hui C, Zhu M, Shen D, Fang C, Long Y, Hu L. Sulfate reduction behavior in response to landfill dynamic pressure changes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119784. [PMID: 38081091 DOI: 10.1016/j.jenvman.2023.119784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/24/2023] [Accepted: 12/03/2023] [Indexed: 01/14/2024]
Abstract
During the long-term stabilization process of landfills, the pressure field undergoes constant changes. This study constructed dynamic pressure changes scenarios of high-pressure differentials (0.6 MPa) and low-pressure differentials (0.2 MPa) in the landfill pressure field at 25 °C and 50 °C, and investigated the sulfate reduction behavior in response to landfill dynamic pressure changes. The results showed that the pressurization or depressurization of high-pressure differentials caused more significant differences in sulfate reduction behavior than that of low-pressure differentials. The lowest hydrogen sulfide (H2S) release peak concentration under pressurization was only 29.67% of that under initial pressure condition; under depressurization, the highest peak concentration of H2S was up to 21,828 mg m-3, posing a serious risk of H2S pollution. Microbial community and correlation analysis showed that pressure had a negative impact on the sulfate-reducing bacteria (SRB) community, and the SRB community adjusted its structure to adapt to pressure changes. Specific SRBs were further enriched with pressure changes. Differential H2S release behavior under pressure changes in the 25 °C pressure environments were mediated by Desulfofarcimen (ASV343) and Desulfosporosinus (ASV1336), while Candidatus Desulforudis (ASV24) and Desulfohalotomaculum (ASV94) played a key role at 50 °C. This study is helpful in the formulation of control strategies for the source of odor pollution in landfills.
Collapse
Affiliation(s)
- Haomin Zhou
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Shuli Guo
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Cai Hui
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Min Zhu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Chengran Fang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| | - Lifang Hu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Yang Z, Ji N, Huang J, Wang J, Drewniak L, Yin H, Hu C, Zhan Y, Yang Z, Zeng L, Liu Z. Decreasing lactate input for cost-effective sulfidogenic metal removal in sulfate-rich effluents: Mechanistic insights from (bio)chemical kinetics to microbiome response. CHEMOSPHERE 2023; 330:138662. [PMID: 37044147 DOI: 10.1016/j.chemosphere.2023.138662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 05/14/2023]
Abstract
High material cost is the biggest barrier for the industrial use of low-molecular-weight organics (i.e. lactate) as external carbon and electron source for sulfidogenic metal removal in sulfate-rich effluents. This study aims to provide mechanistic evidence from kinetics to microbiome analysis by batch modeling to support the possibility of decreasing the lactate input to achieve cost-effective application. The results showed that gradient COD/SO42- ratios at a low level had promising treatment performance, reaching neutralized pH with nearly total elimination of COD (91%-99%), SO42- (85%-99%), metals (80%-99%) including Cu, Zn, and Mn. First-order kinetics exhibited the best fit (R2 = 0.81-0.98) to (bio)chemical reactions, and the simulation results revealed that higher COD/SO42- accelerated the reaction rate of SO42- and COD but not suitable to that of metals. On the other hand, we found that the decreasing COD/SO42- ratio increased average path distance but decreased clustering coefficient and heterogeneity in microbial interaction network. Genetic prediction found that the sulfate-reduction-related functions were significantly correlated with the reaction kinetics changed with COD/SO42- ratios. Our study, combining reaction kinetics with microbiome analysis, demonstrates that the use of lactate as a carbon source under low COD/SO42- ratios entails significant efficiency of metal removal in sulfate-rich effluent using SRB-based technology. However, further studies should be carried out, including parameter-driven optimization and life cycle assessments are necessary, for its practical application.
Collapse
Affiliation(s)
- Zhendong Yang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Buliding Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Ne Ji
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Jin Huang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Buliding Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Jing Wang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Buliding Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Lukasz Drewniak
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Cheng Hu
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Yazhi Zhan
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Zhaoyue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Li Zeng
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Buliding Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
3
|
Dopffel N, Mayers K, Kedir A, Alagic E, An-Stepec BA, Djurhuus K, Boldt D, Beeder J, Hoth S. Microbial hydrogen consumption leads to a significant pH increase under high-saline-conditions: implications for hydrogen storage in salt caverns. Sci Rep 2023; 13:10564. [PMID: 37386256 PMCID: PMC10310820 DOI: 10.1038/s41598-023-37630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023] Open
Abstract
Salt caverns have been successfully used for natural gas storage globally since the 1940s and are now under consideration for hydrogen (H2) storage, which is needed in large quantities to decarbonize the economy to finally reach a net zero by 2050. Salt caverns are not sterile and H2 is a ubiquitous electron donor for microorganisms. This could entail that the injected H2 will be microbially consumed, leading to a volumetric loss and potential production of toxic H2S. However, the extent and rates of this microbial H2 consumption under high-saline cavern conditions are not yet understood. To investigate microbial consumption rates, we cultured the halophilic sulphate-reducing bacteria Desulfohalobium retbaense and the halophilic methanogen Methanocalculus halotolerans under different H2 partial pressures. Both strains consumed H2, but consumption rates slowed down significantly over time. The activity loss correlated with a significant pH increase (up to pH 9) in the media due to intense proton- and bicarbonate consumption. In the case of sulphate reduction, this pH increase led to dissolution of all produced H2S in the liquid phase. We compared these observations to a brine retrieved from a salt cavern located in Northern Germany, which was then incubated with 100% H2 over several months. We again observed a H2 loss (up to 12%) with a concurrent increase in pH of up to 8.5 especially when additional nutrients were added to the brine. Our results clearly show that sulphate-reducing microbes present in salt caverns consume H2, which will be accompanied by a significant pH increase, resulting in reduced activity over time. This potentially self-limiting process of pH increase during sulphate-reduction will be advantageous for H2 storage in low-buffering environments like salt caverns.
Collapse
Affiliation(s)
- Nicole Dopffel
- NORCE Norwegian Research Center AS, Nygårdsgaten 112, 5008, Bergen, Norway.
| | - Kyle Mayers
- NORCE Norwegian Research Center AS, Nygårdsgaten 112, 5008, Bergen, Norway
| | - Abduljelil Kedir
- NORCE Norwegian Research Center AS, Nygårdsgaten 112, 5008, Bergen, Norway
| | - Edin Alagic
- NORCE Norwegian Research Center AS, Nygårdsgaten 112, 5008, Bergen, Norway
| | | | - Ketil Djurhuus
- NORCE Norwegian Research Center AS, Nygårdsgaten 112, 5008, Bergen, Norway
| | | | | | | |
Collapse
|
4
|
He H, Zhang C, Yang X, Huang B, Zhe J, Lai C, Liao Z, Pan X. The efficient treatment of mature landfill leachate using tower bipolar electrode flocculation-oxidation combined with electrochemical biofilm reactors. WATER RESEARCH 2023; 230:119544. [PMID: 36603307 DOI: 10.1016/j.watres.2022.119544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Mature landfill leachate contains high concentrations of organic and inorganic compounds that inhibit the performance of conventional biological treatment. Nowadays, few single treatment techniques could fulfill the requirements of cleaning mature landfill leachate. In this study, a tower bipolar electrode flocculation-oxidation (BEF-O) reactor and an electrochemical biofilm reactor (EBR) combine device was constructed to effectively treat mature landfill leachate. And the removal efficiency and mechanism of various pollutants using the BEF-O reactor were investigated. The BEF-O system with the current density of 100 mA/cm2 shows excellent treatment efficiency, which can roundly remove most pollutants (NH4+-N, COD and heavy metals, etc.), and increase the bioavailability of the effluent to facilitate subsequent EBR treatment. Benefiting from the metabolic stimulation and population selection effect of electric current on microorganisms, EBR has a denser biofilm, stronger anti-pollution load capacity, superior, and stable pollution treatment efficiency. More importantly, the combined device can reduce the concentrations of COD and NH4+-N from 6410 to 338 mg/L and 4065 to 4 mg/L, respectively, and has an economical energy consumption of 32.02 kWh/(kg COD) and 54.04 kWh/ (kg NH4+-N). To summarize, this research could provide an innovative and industrial application prospect technology for the mature landfill leachate treatment.
Collapse
Affiliation(s)
- Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Chen Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoxia Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, China.
| | - Jiangyun Zhe
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, China
| |
Collapse
|
5
|
Yan X, Deng P, Ding T, Zhang Z, Li X, Wu Z. Effect of Temperature on Anaerobic Fermentation of Poplar Ethanol Wastewater: Performance and Microbial Communities. ACS OMEGA 2023; 8:5486-5496. [PMID: 36816634 PMCID: PMC9933484 DOI: 10.1021/acsomega.2c06721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Temperature plays an important role in anaerobic digestion (AD), and different substrates have different optimum temperatures in AD. However, the effect of temperature on the performance of AD when cellulosic ethanol wastewater was used as a substrate was rarely reported. Therefore, the digestion characteristics of cellulosic ethanol wastewater at 25, 35, 45, and 55 °C were investigated, and the microbial communities of the sludge sample were analyzed after fermentation. The results showed that the cumulative methane production was the highest at 55 °C, 906.40 ± 50.67 mL/g VS, which was 81.06, 72.42, and 13.33% higher than that at 25, 35, and 45 °C, respectively. The content of methane was 68.13, 49.26, 70.46, and 85.84% at the terminal period of fermentation at temperatures of 25, 35, 45, and 55 °C, respectively. The testing of volatile fatty acids (VFAs) indicated that the accumulation of VFAs did not occur when the fermentation was carried out at 25, 35, and 45 °C; however, the VFA content at 55 °C was much larger than that in the three groups (25, 35, and 45 °C), and the ratio of propionic acid to acetic acid was larger than 1.4 at the late stage of fermentation, so it inhibited the fermentation. The diversity of the microbial community indicated that the floral structure and metabolic pathway of fermentation were alike at 25 and 35 °C. Firmicutes and Proteobacteria were the main flora covering the 25-55 °C-based phylum or below it. The relative abundance of Methanosaeta was the highest when fermentation temperatures were 25 and 35 °C; however, its relative abundance decreased sharply and the relative abundance of Methanosarcina increased substantially when the temperature increased from 35 to 45 °C, which indicated that Methanosarcina can exist in higher temperatures. At the same time, hydrogenotrophic methanogens such as Methanoculleus and Methanothermobacter were dominant when fermentation temperatures were 45 and 55 °C, which indicated that the metabolic pathway changed from acetoclastic methanogenesis to hydrogenotrophic methanogenesis.
Collapse
|
6
|
Mercado JV, Koyama M, Nakasaki K. Co-occurrence network analysis reveals loss of microbial interactions in anaerobic digester subjected to repeated organic load shocks. WATER RESEARCH 2022; 221:118754. [PMID: 35759844 DOI: 10.1016/j.watres.2022.118754] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Fluctuations in the anaerobic digestion (AD) organic loading rate (OLR) cause shocks to the AD microbiome, which lead to unstable methane productivity. Managing these fluctuations requires a larger digester, which is impractical for community-scale applications, limiting the potential of AD in advancing a circular economy. To allow operation of small-scale AD while managing OLR fluctuations, we need to tackle the issue through elucidation of the microbial community dynamics via 16S rRNA gene sequencing. This study elucidated the interrelation of the AD performance and the dynamics of the microbial interactions within its microbiome in response to repeated high OLR shocks at different frequencies. The OLR shocks were equivalent to 4 times the baseline OLR of 2 g VS/L/d. We found that less frequent organic load shocks result to deterioration of methane productivity. Co-occurrence network analysis shows that this coincides with the breakdown of the microbiome network structure. This suggests loss of microbial interactions necessary in maintaining stable AD. Identification of species influencing the network structure revealed that a species under the genus Anaerovorax has the greatest influence, while orders Spirochaetales and Synergistales represent the greatest number of the influential species. We inferred that the impact imposed by the OLR shocks shifted the microbiome activity towards biochemical pathways that are not contributing to methane production. Establishing a small-scale AD system that permits OLR fluctuations would require developing an AD microbiome resilient to infrequent organic loading shocks.
Collapse
Affiliation(s)
- Jericho Victor Mercado
- School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Mitsuhiko Koyama
- School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kiyohiko Nakasaki
- School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
7
|
Fernando Herrera Adarme O, Eduardo Lobo Baêta B, Cardoso Torres M, Camilo Otalora Tapiero F, Vinicius Alves Gurgel L, de Queiroz Silva S, Francisco de Aquino S. Biogas production by anaerobic co-digestion of sugarcane biorefinery byproducts: Comparative analyses of performance and microbial community in novel single-and two-stage systems. BIORESOURCE TECHNOLOGY 2022; 354:127185. [PMID: 35439561 DOI: 10.1016/j.biortech.2022.127185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic co-digestion (AcD) of sugarcane biorefinery byproducts (hemicelluloses hydrolysate (HH), vinasse, yeast extract and sugarcane bagasse fly ashes was evaluated using new anaerobic reactors fed with organic loading rates (OLR) from 0.9 to 10.8 gCODL-1d-1. The best results were obtained in a two-stage system when the OLR was 5.65 gCODL-1d-1, leading to a total chemical oxygen demand (COD) removal of 87.6 % and methane yield of 243NmLCH4gCODr-1. Microbial community analyses of sludge from both systems (one and two-stages) revealed structural changes and relationship among the main genus found (Clostridium (62.8%), Bacteroides(11.3 %), Desulfovibrio (19.1 %), Lactobacillus(67.7 %), Lactococcus (22.5%), Longilinea (78%), Methanosaeta (19.2 %) and Syntrophus (18.9 %)) with processes performance, kinetic and hydrodynamic parameters. Moreover, biomass granulation was observed in the novel structured anaerobic reactor operated at single stage due to sugarcane bagasse fly ash addition.
Collapse
Affiliation(s)
- Oscar Fernando Herrera Adarme
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita, s/n, 35400-000 Ouro Preto, Brazil
| | - Bruno Eduardo Lobo Baêta
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita, s/n, 35400-000 Ouro Preto, Brazil
| | - Murillo Cardoso Torres
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita, s/n, 35400-000 Ouro Preto, Brazil
| | | | - Leandro Vinicius Alves Gurgel
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita, s/n, 35400-000 Ouro Preto, Brazil
| | - Silvana de Queiroz Silva
- Laboratory of Microbiology and Microorganisms Technology, Department of Biological Sciences, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita, s/n, 35400-000 Ouro Preto, Brazil
| | - Sérgio Francisco de Aquino
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita, s/n, 35400-000 Ouro Preto, Brazil.
| |
Collapse
|
8
|
Igwegbe CA, Obiora-Okafo IA, Iwuozor KO, Ghosh S, Kurniawan SB, Rangabhashiyam S, Kanaoujiya R, Ighalo JO. Treatment technologies for bakers' yeast production wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11004-11026. [PMID: 35001268 DOI: 10.1007/s11356-021-17992-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Researchers in recent years have utilized a broad spectrum of treatment technologies in treating bakers' yeast production wastewater. This paper aims to review the treatment technologies for the wastewater, compare the process technologies, discuss recent innovations, and propose future perspectives in the research area. The review observed that nanofiltration was the most effective membrane process for the treatment of the effluent (at >95% pollutant rejection). Other separation processes like adsorption and distillation had technical challenges of desorption, a poor fit for high pollutant load and cost limitations. Chemical treatment processes have varying levels of success but they are expensive and produce toxic sludge. Sludge production would be a hurdle when product recovery and reuse are targeted. It is difficult to make an outright choice of the best process for treating the effluent because each has its merits and demerits and an appropriate choice can be made when all factors are duly considered. The process intensification of the industrial-scale production of the bakers' yeast process will be a very direct approach, where the process optimisation, zero effluent discharge, and enhanced recovery of value-added product from the waste streams are important approaches that need to be taken into account.
Collapse
Affiliation(s)
- Chinenye Adaobi Igwegbe
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B, Awka, 5025, Nigeria.
| | | | - Kingsley O Iwuozor
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B, Awka, 5025, Nigeria
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Setyo Budi Kurniawan
- , Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor Darul Ehsan, Malaysia
| | - Selvasembian Rangabhashiyam
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India.
| | - Rahul Kanaoujiya
- Department of Chemistry, University of Allahabad, Prayagraj, 211002, India
| | - Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B, Awka, 5025, Nigeria.
- Department of Chemical Engineering, University of Ilorin, P. M. B, Ilorin, 1515, Nigeria.
| |
Collapse
|
9
|
Lagoa-Costa B, Kennes C, Veiga MC. Influence of feedstock mix ratio on microbial dynamics during acidogenic fermentation for polyhydroxyalkanoates production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114132. [PMID: 34863075 DOI: 10.1016/j.jenvman.2021.114132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
The nature of microbial populations plays an essential role in the production of volatile fatty acids (VFA) during acidogenesis, the first stage in polyhydroxyalkanoates (PHA) production using mixed cultures. However, the composition of microbial communities is generally affected by substrate alterations. This work aimed to unravel the microbial dynamics in response to a gradual change in the feedstock composition in an acidogenic reactor, with subsequent PHA production. To achieve this, co-digestion of cheese whey and brewery wastewater (BW) was carried out for the production of VFA, in which the ratio of these feedstocks was varied by gradually increasing the proportion of BW from 0 up to 50% of the organic content. Bacteria such as Megasphaera, Bifidobacterium or Caproiciproducens were the most abundant in the first stages of the co-digestion. However, when BW reached 25% of the organic load, new taxa emerged and displaced the former ones; like Selenomonas, Ethanoligenens or an undefined member of the Bacteroidales order. Accordingly, the production of butyric acid dropped from 52 down to 27%, while the production of acetic acid increased from 36 up to 52%. Furthermore, the gradual increase of the BW ratio led to a progressive drop in the degree of acidification, from 72 down to 57%. In a subsequent approach, the VFA-rich streams, obtained from the co-digestion, were used as substrates in PHA accumulation tests. All the tests yielded similar PHA contents, but with slightly different monomeric composition. The overall results confirmed that the microbiome was altered by a gradual change in the feedstock composition and, consequently, the VFA profile and the monomeric composition of the biopolymer also did.
Collapse
Affiliation(s)
- Borja Lagoa-Costa
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, Rúa da Fraga 10, 15008, A Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, Rúa da Fraga 10, 15008, A Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, Rúa da Fraga 10, 15008, A Coruña, Spain.
| |
Collapse
|
10
|
Chen H, Liu G, Wang K, Piao C, Ma X, Li XK. Characteristics of microbial community in EGSB system treating with oxytetracycline production wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113055. [PMID: 34198178 DOI: 10.1016/j.jenvman.2021.113055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
In order to realize the efficient and stable operation of anaerobic digestion for oxytetracycline (OTC) production wastewater which contains high concentration refractory organic matters and antibiotic residues, two laboratory-scale EGSB reactors (the experimental reactor and the control reactor) were constructed for pre-treating OTC production wastewater and the complex characteristics and connections among anaerobic fermentative bacteria, methanogens and fungi were analyzed. The experimental reactor gradually increased OTC doses of 0-200 mg/L by four phases compared with the control reactor which was fed without OTC addition during 280 days' operation. The average COD removal efficiency of 91.44% with the average OTC removal efficiency of 27.90% was achieved at OTC concentration of 200 mg/L. The addition of OTC did not affect the preponderant methanogen type, and Methanosaeta, a strict aceticlastic methanogen genus, was dominant both in working and controlling reactors on day 280. Redundancy analysis revealed that OTC and VFAs were the main environmental factors affecting the microbial communities and molecular ecological networks analysis indicated that the key genera principally belonged to Methanosaeta, Proteobacteria and Apiotrichum. Additionally, the fungi genus Apiotrichum might be related to the degradation of complex organic contaminants in OTC production wastewater treatment system.
Collapse
Affiliation(s)
- Hongying Chen
- State Key laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Gaige Liu
- School of Civil and Transportation, Hebei University of Technology, Tianjin, 300401, China
| | - Ke Wang
- State Key laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Chenyu Piao
- State Key laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaochen Ma
- State Key laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiang-Kun Li
- School of Civil and Transportation, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
11
|
Campos-Quevedo N, Moreno-Perlin T, Razo-Flores E, Stams AJM, Celis LB, Sánchez-Andrea I. Acetotrophic sulfate-reducing consortia develop active biofilms on zeolite and glass beads in batch cultures at initial pH 3. Appl Microbiol Biotechnol 2021; 105:5213-5227. [PMID: 34125274 DOI: 10.1007/s00253-021-11365-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022]
Abstract
Sulfate-reducing microbial communities remain a suitable option for the remediation of acid mine drainage using several types of carrier materials and appropriate reactor configurations. However, acetate prevails as a product derived from the incomplete oxidation of most organic substrates by sulfate reducers, limiting the efficiency of the whole process. An established sulfate-reducing consortium, able to degrade acetate at initial acidic pH (3.0), was used to develop biofilms over granular activated carbon (GAC), glass beads, and zeolite as carrier materials. In batch assays using glycerol, biofilms successfully formed on zeolite, glass beads, and GAC with sulfide production rates of 0.32, 0.26, and 0.14 mmol H2S/L·d, respectively, but only with glass beads and zeolite, acetate was degraded completely. The planktonic and biofilm communities were determined by the 16S rRNA gene analysis to evaluate the microbial selectivity of the carrier materials. In total, 46 OTUs (family level) composed the microbial communities. Ruminococcaceae and Clostridiaceae families were present in zeolite and glass beads, whereas Peptococcaceae was mostly enriched on zeolite and Desulfovibrionaceae on glass beads. The most abundant sulfate reducer in the biofilm of zeolite was Desulfotomaculum sp., while Desulfatirhabdium sp. abounded in the planktonic community. With glass beads, Desulfovibrio sp. dominated the biofilm and the planktonic communities. Our results indicate that both materials (glass beads and zeolite) selected different key sulfate-reducing microorganisms able to oxidize glycerol completely at initial acidic pH, which is relevant for a future application of the consortium in continuous bioreactors to treat acidic streams. KEY POINTS: • Complete consumption of glycerol and acetate at acidic pH by sulfate reduction. • Glass beads and zeolite are suitable materials to form sulfate-reducing biofilms. • Acetotrophic sulfate-reducing bacteria attached to zeolite preferably.
Collapse
Affiliation(s)
- Nohemi Campos-Quevedo
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4a. Sección, C.P. 78216, San Luis Potosí, S.L.P., México.,Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Tonatiuh Moreno-Perlin
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4a. Sección, C.P. 78216, San Luis Potosí, S.L.P., México
| | - Elías Razo-Flores
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4a. Sección, C.P. 78216, San Luis Potosí, S.L.P., México
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Lourdes B Celis
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4a. Sección, C.P. 78216, San Luis Potosí, S.L.P., México.
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
12
|
Li X, Lu MY, Huang Y, Yuan Y, Yuan Y. Influence of seasonal temperature change on autotrophic nitrogen removal for mature landfill leachate treatment with high-ammonia by partial nitrification-Anammox process. J Environ Sci (China) 2021; 102:291-300. [PMID: 33637255 DOI: 10.1016/j.jes.2020.09.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 06/12/2023]
Abstract
In this study, a denitrification (DN)-partial nitritation (PN)-anaerobic ammonia oxidation (Anammox) system for the efficient nitrogen removal of mature landfill leachate was built with a zone-partitioning self-reflux biological reactor as the core device, and the effects of changes in seasonal temperature on the nitrogen removal in non-temperature-control environment were explored. The results showed that as the seasonal temperature decreased from 34°C to 11.3°C, the total nitrogen removal rate of the DN-PN-Anammox system gradually decreased from the peak value of 1.42 kg/(m3•day) to 0.49 kg/(m3•day). At low temperatures (<20°C), when the nitrogen load (NLR) of the system is not appropriate, the fluctuation of high NH4+-N concentration in the landfill leachate greatly influenced the stability of the nitrogen removal. At temperatures of 11°C-15°C, the NLR of the system is controlled below 0.5 kg/(m3•day), which can achieve stable nitrogen removal and the nitrogen removal efficiency can reach above 96%. The abundance of Candidatus Brocadia gradually increased with the decrease of temperature. Nitrosomonas, Candidatus Brocadia and Candidatus Kuenenia as the main functional microorganisms in the low temperature.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China.
| | - Ming-Yu Lu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yi Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yan Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| |
Collapse
|
13
|
Yao S, Xiong L, Chen X, Li H, Chen X. Comparative study of lipid production from cellulosic ethanol fermentation wastewaters by four oleaginous yeasts. Prep Biochem Biotechnol 2020; 51:669-677. [PMID: 33302781 DOI: 10.1080/10826068.2020.1852416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The biochemical treatment of cellulosic ethanol wastewater (CEW) is considered to be an ideal green process. To screen out the best oleaginous yeastfor the utilization of cellulosic ethanol wastewater, four oleaginous yeasts (Trichosporon cutaneum, Rhorosporidium toruloides, Cryptococcus albidus and T. coremiiforme) were compared to assess their abilities for lipid production in terms of biomass production, lipid content and lipid yield. Furthermore, thechemical oxygen demand (COD) conversion rate, COD degradation and fatty acid composition were calculated to analyze the effect of wastewaters treatment. According to the fermentation results, the highest biomass and lipid yield of T. cutaneum in CEW were 20.945 and 1.56 g/L, respectively, while the R. toruloides reached the highest lipid content (17.32%). The maximum conversion rates of T. cutaneum are 73.64 and 6.06%, respectively, in terms of conversion yield of biomass/COD and lipids/COD. The content of fatty acids showed that after six days' fermentation, T. coremiiforme obtained the highest unsaturated fatty acid content, the content of C18:1 and C18:2 was 57.64%. This study suggests that T. cutaneum has great potential for lipid production and wastewaters treatment from cellulosic ethanol fermentation.
Collapse
Affiliation(s)
- Shimiao Yao
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, P. R. China.,Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, P. R. China.,Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, P. R. China.,R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, People's Republic of China
| | - Lian Xiong
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, P. R. China.,Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, P. R. China.,Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, P. R. China.,R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, People's Republic of China
| | - Xuefang Chen
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, P. R. China.,Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, P. R. China.,Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, P. R. China.,R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, People's Republic of China
| | - Hailong Li
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, P. R. China.,Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, P. R. China.,Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, P. R. China.,R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, People's Republic of China
| | - Xinde Chen
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, P. R. China.,Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, P. R. China.,Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, P. R. China.,R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi, People's Republic of China
| |
Collapse
|
14
|
Li J, Liang Y, Miao Y, Wang D, Jia S, Liu CH. Metagenomic insights into aniline effects on microbial community and biological sulfate reduction pathways during anaerobic treatment of high-sulfate wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140537. [PMID: 32623173 DOI: 10.1016/j.scitotenv.2020.140537] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/10/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
For comprehensive insights into the change of sulfate reduction pathway responding to the toxic stress and the shift of microbial community and performance of sulfate reduction, we built a laboratory-scale expanded granular sludge bed reactor (EGSB) treating high-sulfate wastewater with elevated aniline concentrations from 0 to 480 mg/L. High-throughput sequencing and metagenomic approaches were applied to decipher the molecular mechanisms of sulfate reduction under aniline stress through taxonomic and functional profiles. The increasing aniline in the anaerobic system induced the accumulation of volatile fatty acids (VFA), further turned the bioreactor into acidification, which was the principal reason for the deterioration of system performance and finally resulted in the accumulation of toxic free sulfide. Moreover, aniline triggered the change of bacterial community and genes relating to sulfate reduction pathways. The increase of aniline from 0 to 320 mg/L enriched total sulfate-reducing bacteria (SRB), and the most abundant genus was Desulfomicrobium, accounting for 66.85-91.25% of total SRB. The assimilatory sulfate reduction pathway was obviously inhibited when aniline was over 160 mg/L, while genes associated with dissimilatory sulfate reduction pathways all exhibited an upward tendency with the increasing aniline content. The enrichment of aniline-resistant SRB (e.g. Desulfomicrobium) carrying genes associated with the dissimilatory sulfate reduction pathway also confirmed the underlying mechanism that sulfate reduction turned into dissimilation under high aniline condition. Taken together, these results comprehensively provided solid evidence for the effects of aniline on the biological sulfate reduction processes treating high-sulfate wastewater and the underlying molecular mechanisms which may highlight the important roles of SRB and related sulfate reduction genes during treatment.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ying Liang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu Miao
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shuyu Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Chang-Hong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Mohammadzadeh N, Dahrazma B, Saghravani SF, Mohsenzadeh P, Mahvi AH. Removal of sulfate by electrocoagulation with discontinuous electrodes in a continuous system. DESALINATION AND WATER TREATMENT 2020; 193:414-423. [DOI: 10.5004/dwt.2020.25817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
16
|
Wu L, Yan Z, Li J, Huang S, Li Z, Shen M, Peng Y. Low temperature advanced nitrogen and sulfate removal from landfill leachate by nitrite-anammox and sulfate-anammox. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113763. [PMID: 31891911 DOI: 10.1016/j.envpol.2019.113763] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/22/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Under anaerobic conditions, ammonium (NH4+) can react with nitrite (NO2-) and sulfate (SO42-), termed nitrite-anammox (NirAnammox) and sulfate-anammox (Sulfammox), respectively. However, how to remove NH4+ and SO42- together from leachate is unclear. In this study, NirAnammox and Sulfammox cooperatively achieved nitrogen and sulfate removal from leachate using a biological process at low temperature (14-15 °C). NH4+, total nitrogen (TN), and SO42- concentrations in the influent were 610-700, 670-900, 1870-1920 mg/L, respectively, and 10 ± 1, 35 ± 3, and 897.7 ± 10 mg/L, respectively, in the effluent. Sulfammox, and NirAnammox (including partial nitrification) removed 44.2% and 35.46% of the NH4+, respectively. Therefore, because leachate contains high concentrations of NH4+ and SO42-, NirAnammox and Sulfammox can easily occur together, with nitrogen removal by Sulfammox being more than NirAnammox. The relative abundance of dominant bacteria of the Sulfammox were 10-20 times that of Candidatus Kuenenia (NirAnammox) in each reactor. Organic matter negatively affected NirAnammox, but not Sulfammox. Dissolved oxygen negatively affected both.
Collapse
Affiliation(s)
- Lina Wu
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Zhibin Yan
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jin Li
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Shan Huang
- Department of Civil and Environmental Engineering, Princeton University, Princeton 08544, USA
| | - Zhi Li
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Mingyu Shen
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Centre of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
17
|
Wang H, Li X, Gong Z, Wang X, Liang H, Gao D. Co-metabolic substrates enhanced biological nitrogen removal from cellulosic ethanol biorefinery wastewater using aerobic granular sludges. ENVIRONMENTAL TECHNOLOGY 2020; 41:389-399. [PMID: 29995596 DOI: 10.1080/09593330.2018.1499811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
The effect of different co-metabolic substrates (glucose, acetic acid and ethanol) on aerobic granular sludge treating cellulose ethanol wastewater was investigated using sequencing batch reactors. The efficiencies of the three substrates in removing chemical oxygen demand were respectively 18.87%, 28.88% and 27.99%, all of which were remarkably higher than without co-metabolic substrates, indicating that co-metabolic substrates can promote the degradation of the refractory substances. With acetic acid as the co-metabolic substrate, the removal amount of ammonium nitrogen and nitrate nitrogen was greater than glucose and ethanol used. The nitrogen removals by the three co-metabolic substrates were 53.18%, 72.15%, 69.36%, respectively, which were 1.4, 1.8, and 1.6 times the removal without co-metabolic substrates. Fluorescence in situ hybridization results showed that the proportion of ammonium-oxidizing bacteria in the granular sludge was greater than that of nitrite-oxidizing bacteria after adding co-metabolic substrates, and the order was acetic acid > ethanol > glucose.
Collapse
Affiliation(s)
- He Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin, People's Republic of China
| | - Xue Li
- Heilongjiang Provincial Environmental Science Research Institute, Harbin, People's Republic of China
- School of Forestry, Northeast Forestry University, Harbin, People's Republic of China
| | - Zhiyuan Gong
- School of Forestry, Northeast Forestry University, Harbin, People's Republic of China
| | - Xiaolong Wang
- State Key Laboratory of Urban Water Resource and Water Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Hong Liang
- State Key Laboratory of Urban Water Resource and Water Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Dawen Gao
- State Key Laboratory of Urban Water Resource and Water Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| |
Collapse
|
18
|
Wu L, Shen M, Li J, Huang S, Li Z, Yan Z, Peng Y. Cooperation between partial-nitrification, complete ammonia oxidation (comammox), and anaerobic ammonia oxidation (anammox) in sludge digestion liquid for nitrogen removal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112965. [PMID: 31401520 DOI: 10.1016/j.envpol.2019.112965] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/20/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
The challenge of sludge digester liquor treatment is its high ammonium nitrogen (NH4+-N) concentration. Early reports found that complete ammonia oxidation (comammox) was not present and anaerobic ammonia oxidation (anammox) was difficult to achieve in most sludge digester liquor treatments. In this study, NH4+-N removal by cooperation between partial-nitrification, comammox, and anammox processes was achieved in a sequencing batch reactor (SBR) for sludge digester liquor treatment. The results showed that 2100-2200 mg/L of NH4+-N was removed in the SBR with 98.82% removal efficiency. In addition, 55.11% of NH4+-N was converted to nitrite nitrogen (NO2--N) by partial-nitrification, 25.43% of NH4+-N was converted to nitrate nitrogen (NO3--N) by comammox, and 18.28% of NH4+-N was removed by anammox. During the operation, in the SBR, the relative abundance of the dominant ammonia-oxidizing bacteria (Chitinophagaceae) was 18.89%, that of the dominant anammox bacteria (Candidatus Kuenenia) was 0.10%, and that of the dominant comammox bacteria (Nitrospira) was 0.20%. Therefore, the high nitrogen removal efficiency in this system was considered the result of the combination of the three processes. These results showed that comammox and anammox could play very important roles in nitrogen transformation and energy-saving in nitrogen removal systems.
Collapse
Affiliation(s)
- Lina Wu
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Mingyu Shen
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jin Li
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Shan Huang
- Department of Civil and Environmental Engineering, Princeton University, Princeton 08544, USA
| | - Zhi Li
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Zhibin Yan
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
19
|
Song L, Li D, Fang H, Cao X, Liu R, Niu Q, Li YY. Revealing the correlation of biomethane generation, DOM fluorescence, and microbial community in the mesophilic co-digestion of chicken manure and sheep manure at different mixture ratio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19411-19424. [PMID: 31073832 DOI: 10.1007/s11356-019-05175-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Batch co-digestion tests of chicken manure (CM) and sheep manure (SM) at different ratio (Rs/c) were conducted under mesophilic condition (35 °C). Batch kinetic analysis of bioCH4 production, excitation-emission matrix (EEM) fluorescence of dissolved organic matter (DOM), and microbial community were investigated. The well-fitted modified Gompertz model (R2, 0.98-0.99) resulted that the co-digestion markedly improved the methane production rate and shortened the lag phase time. The highest bioCH4 yield of 219.67 mL/gVSadd and maximum production rate of 0.378 mL/gVSadd/h were obtained at an optimum Rs/c of 0.4. Additionally, a significant variation of DOM was detected at the Rs/c of 0.4 with a consistent degradation of soluble microbial byproduct-like and protein-like organics. The positive synergy effects of co-digestion conspicuously enhanced the bioCH4 production efficiency. FI370 and NADH were significantly correlated to Rs/c (p < 0.05). Moreover, the correlations among process indicator, EEM-peaks and different environmental parameters were evaluated by Pearson correlation analysis. The high diversity of acetoclastic methanogens and hydrogenotrophic methanogens in the co-digestion improved the stability of process. Graphical Abstract.
Collapse
Affiliation(s)
- Liuying Song
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Dunjie Li
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Hongli Fang
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Xiangyunong Cao
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Rutao Liu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Qigui Niu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China.
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| |
Collapse
|
20
|
Zeng T, Zhang S, Gao X, Wang G, Lens PNL, Xie S. Assessment of Bacterial Community Composition of Anaerobic Granular Sludge in Response to Short-Term Uranium Exposure. MICROBIAL ECOLOGY 2018; 76:648-659. [PMID: 29417188 DOI: 10.1007/s00248-018-1152-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
The effect of 10-50 μM uranium (U(VI)) on the bacterial community of anaerobic granular sludge was investigated by 24-h exposure tests, after which the bacterial community was analyzed by high-throughput sequencing. The specific U(VI) reducing activity of the anaerobic granular sludge ranged between 3.1 to 19.7 μM U(VI) g-1(VSS) h-1, independently of the initial U(VI) concentration. Alpha diversity revealed that microbial richness and diversity was the highest for anaerobic granular sludge upon 10 μM uranium exposure. Compared with the original biomass, the phylum of Euryarchaeota was significantly affected, whereas the Bacteroidetes, Firmicutes, and Synergistetes phyla were only slightly affected. However, the abundance of Chloroflexi and Proteobacteria phyla clearly increased after 24 h uranium exposure. Based on the genus level analysis, significant differences appeared in the bacterial abundance after uranium exposure. The proportions of Pseudomonas, Acinetobacter, Parabacteroides, Brevundimonas, Sulfurovum, and Trichococcus increased significantly, while the abundance of Paludibacter and Erysipelotrichaceae incertae sedis decreased dramatically. This study shows a dynamic diversification of the bacterial composition as a response to a short time (24 h) U(VI) exposure (10-50 μM).
Collapse
Affiliation(s)
- Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, People's Republic of China.
- UNESCO-IHE Institute for Water Education, Delft, The Netherlands.
| | - Shiqi Zhang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, People's Republic of China
| | - Xiang Gao
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, People's Republic of China
| | - Guohua Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, People's Republic of China
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, Delft, The Netherlands
| | - Shuibo Xie
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, People's Republic of China
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, People's Republic of China
| |
Collapse
|