1
|
Huang J, Wang C, Huang X, Zhang Q, Feng R, Wang X, Zhang S, Wang J. Long-term effect of phenol, quinoline, and pyridine on nitrite accumulation in the nitrification process: performance, microbial community, metagenomics and molecular docking analysis. BIORESOURCE TECHNOLOGY 2024; 412:131407. [PMID: 39233185 DOI: 10.1016/j.biortech.2024.131407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Phenol, quinoline, and pyridine, commonly found in industrial wastewater, disrupt the nitrification process, leading to nitrite accumulation. This study explores the potential mechanisms through which these biotoxic organic compounds affect nitrite accumulation, using metagenomic and molecular docking analyses. Despite increasing concentrations of these compounds from 40 to 160 mg/L, ammonia nitrogen removal was not hindered, and stable nitrite accumulation rates exceeding 90 % were maintained. Additionally, these compounds inhibited nitrite-oxidizing bacteria (NOB) and enriched ammonia-oxidizing bacteria (AOB) in situ. As the concentration of these compounds rose, protein (PN) and polysaccharide (PS) concentrations also increased, along with a higher PN/PS ratio. Metagenomic analysis further revealed an increase in hao relative abundance, while microbial community analysis showed increased Nitrosomonas abundance, which contributed to nitrite accumulation stability. Molecular docking indicated that these compounds have lower binding energy with hydroxylamine oxidoreductase (HAO) and nitrate reductase (NAR), theoretically supporting the observed sustained nitrite accumulation.
Collapse
Affiliation(s)
- Jianming Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology -Beijing, Ding 11#, Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Chunrong Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology -Beijing, Ding 11#, Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Xiaoyan Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology -Beijing, Ding 11#, Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Qi Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology -Beijing, Ding 11#, Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Rongfei Feng
- School of Chemical and Environmental Engineering, China University of Mining and Technology -Beijing, Ding 11#, Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Xiaocong Wang
- Beijing Drainage Group Co. Ltd (BDG), Beijing, 100022, PR China
| | - Shujun Zhang
- Beijing Drainage Group Co. Ltd (BDG), Beijing, 100022, PR China
| | - Jianbin Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology -Beijing, Ding 11#, Xueyuan Road, Haidian District, Beijing 100083, PR China
| |
Collapse
|
2
|
Tamang M, Paul KK. Advances in treatment of coking wastewater - a state of art review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:449-473. [PMID: 35050895 DOI: 10.2166/wst.2021.497] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coking wastewater poses a serious threat to the environment due to the presence of a wide spectrum of refractory substances such as phenolic compounds, polycyclic aromatic hydrocarbons and heterocyclic nitrogenous compounds. These toxic substances are difficult to treat using conventional treatment methods alone. In recent years much attention has been given to the effective treatment of coking wastewater. Thus, this review seeks to provide a brief overview of recent developments that have taken place in the treatment of coking wastewater. In addition, this article addresses the complexity and the problems associated with treatment followed by a discussion on biological methods with special focus on bioaugmentation. As coking wastewater is refractory in nature, some of the studies have been related to improving the biodegradability of wastewater. The final section focuses on the integrated treatment methods that have emerged as the best solution for tackling the highly unmanageable coking wastewater. Attention has also been given to emerging microwave technology which has tremendous potential for treatment of coking wastewater.
Collapse
Affiliation(s)
- Markus Tamang
- Civil Engineering Department, National Institute of Technology, Rourkela, India E-mail:
| | - Kakoli Karar Paul
- Civil Engineering Department, National Institute of Technology, Rourkela, India E-mail:
| |
Collapse
|
3
|
Rongsayamanont C, Khongkhaem P, Luepromchai E, Khan E. Inhibitory effect of phenol on wastewater ammonification. BIORESOURCE TECHNOLOGY 2020; 309:123312. [PMID: 32283486 DOI: 10.1016/j.biortech.2020.123312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to elucidate inhibitory effect of phenol on ammonification of dissolved organic nitrogen (DON) in wastewater. Laboratory incubation experiments were conducted using primary and secondary effluent samples spiked with phenol (100-1000 mg/L) and inoculated with mixed cultures, pure strains of phenol-degrading bacteria (Acinetobacter sp. and Pseudomonas putida F1), and/or an ammonia oxidizing bacterium (Nitrosomonas europaea). DON concentration was monitored with incubation time. Phenol suppressed the ammonification rate of DON up to 62.9%. No or minimal ammonification inhibition was observed at 100 mg/L of phenol while the inhibition increased with increasing phenol concentration from 250 to 1000 mg/L. The inhibition was curtailed by the presence of the phenol-degrading bacteria. DON was ammonified in the samples inoculated with only N. europaea and the ammonification was also inhibited by phenol. The findings suggest that high phenol in wastewater could result in low ammonification and high DON in the effluent.
Collapse
Affiliation(s)
- Chaiwat Rongsayamanont
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok 10330, Thailand
| | - Piyamart Khongkhaem
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ekawan Luepromchai
- Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok 10330, Thailand; Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA.
| |
Collapse
|
4
|
Zhou X, Wang G, Yin Z, Chen J, Song J, Liu Y. Performance and microbial community in a single-stage simultaneous carbon oxidation, partial nitritation, denitritation and anammox system treating synthetic coking wastewater under the stress of phenol. CHEMOSPHERE 2020; 243:125382. [PMID: 31775099 DOI: 10.1016/j.chemosphere.2019.125382] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/16/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
As a highly toxic pollutant, phenol is typically present in some high-strength nitrogenous wastewater. In this study, a synthetic coking wastewater with 400 mg L-1 ammonia-nitrogen and 50-250 mg L-1 phenol was treated. Results showed that simultaneous carbon oxidation, partial nitritation, denitritation and anammox (SCONDA) was successfully achieved by step-wise phenol addition. At 200 mg L-1 phenol, 99.8% phenol, 97.5% COD and 89.8% nitrogen could be together removed. However, further increase in phenol concentration caused significant deterioration of the short-terms nitrogen removal efficiency. High-throughput sequencing revealed remarkable evolution in microbial biodiversity, community composition, especially functional species at different phenol concentrations. When the phenol addition was increased from 200 to 250 mg L-1, the relative abundance of Candidatus Kuenenia as predominant anammox species decreased by 87.1%, while phenol-degrading bacteria was increasingly abundant. Furthermore, the removal mechanism of phenol and nitrogen was elucidated by the collaboration among different key functional microbial consortia.
Collapse
Affiliation(s)
- Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Gonglei Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China
| | - Zeyang Yin
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China
| | - Jiabo Chen
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China
| | - Jingjing Song
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 637819, Singapore; Advanced Environmental Biotechnology Centre, NEWRI, Nanyang Technological University, 637141, Singapore
| |
Collapse
|
5
|
Performance of Anammox Processes for Wastewater Treatment: A Critical Review on Effects of Operational Conditions and Environmental Stresses. WATER 2019. [DOI: 10.3390/w12010020] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process is well-known as a low-energy consuming and eco-friendly technology for treating nitrogen-rich wastewater. Although the anammox reaction was widely investigated in terms of its application in many wastewater treatment processes, practical anammox application at the pilot and industrial scales is limited because nitrogen removal efficiency and anammox activity are dependent on many operational factors such as temperature, pH, dissolved oxygen concentration, nitrogen loading, and organic matter content. In practical application, anammox bacteria are possibly vulnerable to non-essential compounds such as sulfides, toxic metal elements, alcohols, phenols, and antibiotics that are potential inhibitors owing to the complexity of the wastewater stream. This review systematically summarizes up-to-date studies on the effect of various operational factors on nitrogen removal performance along with reactor type, mode of operation (batch or continuous), and cultured anammox bacterial species. The effect of potential anammox inhibition factors such as high nitrite concentration, high salinity, sulfides, toxic metal elements, and toxic organic compounds is listed with a thorough interpretation of the synergistic and antagonistic toxicity of these inhibitors. Finally, the strategy for optimization of anammox processes for wastewater treatment is suggested, and the importance of future studies on anammox applications is indicated.
Collapse
|
6
|
Xu LZJ, Shi ZJ, Guo Q, Bai YH, Shen YY, Jin LY, Zhao YH, Zhang JT, Jin RC. Performance and microbial community responses of the partial nitration process to tetracycline and Zn(II). Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
7
|
Wang W, Pang C, Sierra JM, Hu Z, Ren X. Performance and recovery of a completely separated partial nitritation and anammox process treating phenol-containing wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33917-33926. [PMID: 29982943 DOI: 10.1007/s11356-018-2701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Anammox process is considered as a promising technology for removing total nitrogen from low-strength ammonium and phenol-containing wastewater. However, it is still a challenge for the anammox process to treat high-strength ammonium and phenol-containing wastewater. A completely separated partial nitritation and anammox (CSPN/A) process was developed to remove total nitrogen from high-strength phenol-containing wastewater. About 92% of COD, 100% of phenol, and 82.4% of total nitrogen were successfully removed at a NH4+-N concentration of 200 mg L-1 with a phenol/NH4+-N mass ratio of 0.5 in the CSPN/A process. Furthermore, a shock loading of 300 mg phenol L-1 with a phenol/NH4+-N mass ratio of 1.5 led to a complete failure of partial nitritation, but the performance was rapidly recovered by the increase of NH4+-N concentration. Although the activities of ammonium-oxidizing bacteria and anammox bacteria were severely inhibited at a phenol/NH4+-N mass ratio of 1.5, the enrichment of efficient phenol degraders in the CSPN stage could strengthen the performance robustness of partial nitritation and anammox process. Therefore, this study presented a new insight on the feasibility of the anammox process for treating high-strength ammonium and phenol-containing wastewater.
Collapse
Affiliation(s)
- Wei Wang
- Department of Municipal Engineering, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, 230009, China.
- Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, 230009, China.
| | - Chao Pang
- Department of Municipal Engineering, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Julian Muñoz Sierra
- Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628CN, Delft, The Netherlands
- KWR Watercycle Research Institute, Groningenhaven 7, 3430BB, Nieuwegein, The Netherlands
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xuesong Ren
- Department of Municipal Engineering, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
8
|
Guo M, Wang J, Wang C, Strong PJ, Jiang P, Ok YS, Wang H. Carbon nanotube-grafted chitosan and its adsorption capacity for phenol in aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:340-347. [PMID: 31125747 DOI: 10.1016/j.scitotenv.2019.05.148] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Chitosan was covalently grafted onto the surface of multi-walled carbon nanotubes to create a novel chitosan/multi-walled carbon nanotube. The structure of the new material was characterized using Fourier transform-infrared spectroscopy, cross polarization magic angle spinning 13C nuclear magnetic resonance, thermogravimetric analysis, XRD ray diffraction analysis, differential scanning calorimetry and scanning electron microscopy. The phenol adsorption capacity was determined and the Langmuir and Freundlich models were used to describe the adsorption isotherms. The adsorption capacity of the novel chitosan/multi-walled carbon nanotube material for phenol (86.96 mg/g) was improved compared to the original chitosan (61.69 mg/g). The kinetic studies showed rapid adsorption, exhibiting Lagergren second-order kinetics. Therefore, this study provides a reference for preparing functional materials from biological substrates that are able to remove toxic pollutants from an aqueous environment.
Collapse
Affiliation(s)
- Ming Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; School of Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jue Wang
- School of Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Chunge Wang
- School of Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - P J Strong
- Queensland University of Technology, GPO Box 2432, 2 George St, Brisbane, QLD 4001, Australia
| | - Peikun Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hailong Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China.
| |
Collapse
|
9
|
Zhou JH, Yu HC, Ye KQ, Wang HY, Ruan YJ, Yu JM. Optimized aeration strategies for nitrogen removal efficiency: application of end gas recirculation aeration in the fixed bed biofilm reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28216-28227. [PMID: 31368074 DOI: 10.1007/s11356-019-06050-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Aeration strategy played an important role in reactor performance. In this study, when superficial upflow air velocity (SAV) decreased from 0.16 to 0.08 cm s-1, low dissolved oxygen concentration (DO) of 2.0 mg L-1 occurred in reactor. The required depth for anoxic microenvironment in biofilm decreased from 902.3 to 525.9 μm, which enhanced the growth of denitrifying bacteria and total nitrogen (TN) removal efficiency. However, decreasing aeration intensity resulted in insufficient hydraulic shear stress, which led to weak biofilm matrix structure. Mass biofilm detachment and reactor deterioration then occurred after 87 days of operation. An end gas recirculation aeration strategy was proposed to separately manipulate DO and aeration intensity. Low DO and high aeration intensity were simultaneously achieved, which enhanced the metabolism of denitrifying bacteria (such as Flavobacterium sp., Pseudorhodobacter sp., and Dok59 sp.) and EPS-producing bacteria (such as Zoogloea sp. and Rhodobacter sp.). Consequently, high TN removal performance (82.1 ± 2.7%) and stable biofilm structure were achieved.
Collapse
Affiliation(s)
- Jia Heng Zhou
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hao Cheng Yu
- College of Environment, Zhejiang University of Technology, 310014, CNo. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Kai Qiang Ye
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hong Yu Wang
- College of Environment, Zhejiang University of Technology, 310014, CNo. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Yun Jie Ruan
- College of Bio-systems Engineering and Food Science, Zhejiang University, |Hangzhou, 310058, China
| | - Jian Ming Yu
- College of Environment, Zhejiang University of Technology, 310014, CNo. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
10
|
Pan J, Ma J, Wu H, Chen B, He M, Liao C, Wei C. Application of metabolic division of labor in simultaneous removal of nitrogen and thiocyanate from wastewater. WATER RESEARCH 2019; 150:216-224. [PMID: 30528918 DOI: 10.1016/j.watres.2018.11.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/05/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Metabolic division of labor is a key ecological strategy in bacteria to allow concurrent execution of multiple tasks through functional differentiation and metabolite exchange. While it is prevalent in nature, a lot of novel interactions remain to be further explored for improved wastewater biological treatment. Here, we present a combined experimental and modeling study on the simultaneous removal of nitrogen and thiocyanate from wastewater by using a syntrophic microbial community. The syntrophic division of labor was achieved by coupling autotrophic denitrification (AD) and anaerobic ammonium oxidation (AN) through both cooperative and competitive interactions. We demonstrated that the syntrophic community can achieve almost complete removal of all pollutants under certain initial conditions. We then perturbed the initial condition by varying the concentration ratio between ammonium to thiocyanate as well as the biomass ratio between AD and AN. Our observations show that adding ammonium negatively impacts the thiocyanate removal efficiency and adding anammox bacteria have opposite effects on the removal efficiency of thiocyanate and ammonium. Using a mathematical model, we simultaneously varied these two initial conditions and identified the parameter regime where our syntrophic ecosystem can be most efficient in removing total nitrogen. By highlighting the utility of syntrophic pair of functional bacteria in removing pollutants, our study will facilitate the rational design of more complex microbial consortia for the removal of toxic and hazardous compounds from industrial wastewater.
Collapse
Affiliation(s)
- Jianxin Pan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Jingde Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Ben Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Meiling He
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chen Liao
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
11
|
Oshiki M, Masuda Y, Yamaguchi T, Araki N. Synergistic inhibition of anaerobic ammonium oxidation (anammox) activity by phenol and thiocyanate. CHEMOSPHERE 2018; 213:498-506. [PMID: 30245226 DOI: 10.1016/j.chemosphere.2018.09.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/29/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
Coke-oven wastewater discharged from the steel-manufacturing process is phenol and thiocyanate (SCN)-rich wastewater, which inhibits microbial activities in biological wastewater treatment processes. In the present study, synergistic inhibition of anaerobic ammonium oxidation (anammox) activity by phenol and SCN was examined by batch incubation and continuous operation of an anammox reactor. The comparison of anammox activities determined in the batch incubation, in which the anammox biomass was anoxically incubated with 10-250 mg L-1 of i) phenol, ii) SCN, or iii) both phenol and SCN, showed that synergistic inhibition by phenol and SCN was greater than the inhibitions by phenol or SCN alone. The synergistic inhibition by phenol and SCN was further investigated by operating an up-flow column anammox reactor for 262 d. The removal efficiencies of NH4+ and NO2- deteriorated when phenol and SCN concentrations in the influent increased to 16 and 32 mg L-1, respectively, and the inhibition of anammox activity was further investigated by a15NO2- tracer experiment. Addition of phenol and SCN resulted in a population shift of anammox bacteria, and the dominant species changed from "Candidatus Kuenenia stuttgartiensis" to "Ca. Brocadia sinica". The relative abundance of Azoarcus and Thiobacillus 16S rRNA gene reads increased during the operation, suggesting that they were responsible for the anaerobic phenol and SCN degradation. The present study is the first to document the synergistic inhibition of anammox activity by phenol and SCN and the microbial consortia involved in the nitrogen removal as well as the phenol and SCN degradations.
Collapse
Affiliation(s)
- Mamoru Oshiki
- Department of Civil Engineering, National Institute of Technology, Nagaoka College, Nagaoka, Japan.
| | - Yoshiko Masuda
- Department of Civil Engineering, National Institute of Technology, Nagaoka College, Nagaoka, Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
| | - Nobuo Araki
- Department of Civil Engineering, National Institute of Technology, Nagaoka College, Nagaoka, Japan
| |
Collapse
|
12
|
Xing BS, Jin RC. Inhibitory effects of heavy metals and antibiotics on nitrifying bacterial activities in mature partial nitritation. CHEMOSPHERE 2018; 200:437-445. [PMID: 29501034 DOI: 10.1016/j.chemosphere.2018.02.132] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/06/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
To facilitate the use of partial nitritation (PN) in nitrogen removal processes for livestock wastewater, this work investigated the inhibitory effects of heavy metals and antibiotics on the nitrifying bacterial activities of the PN processes. Biomass was collected from a continuous-flow internal-loop airlift reactor and cultured with fixed ammonium concentrations of 921 mg N L-1. Batch activity tests were conducted to determine the specific oxygen uptake rate. The individual and interactive inhibitory effects of Zn2+, Cu2+, oxytetracycline (OTC) and sulfamethazine (SMZ) were evaluated using an orthogonal test. The results showed that the half maximal inhibitory concentration (IC50) values of Zn2+, Cu2+, OTC and SMZ on PN sludge were 50.1, 35.4, 447 and 1890 mg L-1, respectively. The joint toxicities of heavy metals (Zn2+ and Cu2+) and antibiotics (OTC and SMZ) in the PN mixed culture were generally synergistic, except for between Zn2+ and Cu2+, which was antagonistic. In joint toxicity tests, the significance of the inhibitory effect of Zn2+ (15.3-164.3 mg L-1), Cu2+ (13.8-90.9 mg L-1), OTC (27.0-866.5 mg L-1) and SMZ (290-3490 mg L-1) on the nitrifying bacterial activity can be ranked in the following order: SMZ > Cu2+ > Zn2+ > OTC. Additionally, different exposure times (1 h, 3 h and 24 h) with or without aeration were also comparatively studied. These results show that a greater PN sludge activity loss than when exposure without aeration.
Collapse
Affiliation(s)
- Bao-Shan Xing
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.
| |
Collapse
|