1
|
Bagheshzadeh P, Amini E, Baniasadi F, Tavana S, Mohammadikish M. Green Synthesis of Copper Nanoparticles using Rosmarinus officinalis L. Extract Improves the Developmental Competence of Mouse Oocytes during in Vitro Maturation. Reprod Sci 2025; 32:1241-1261. [PMID: 39971863 DOI: 10.1007/s43032-025-01816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
An effective approach to enrich the in vitro maturation (IVM) of oocyte medium as one of the main assisted reproduction technologies is the use of antioxidants to minimize oxidative stress. This study examined the effects of copper nanoparticles (CuNPs) synthesized by chemical (Ch-NPs) and green (G-CuNPs) methods on the IVM process of mouse oocytes and the development of the embryo in comparison to control oocytes (without nanoparticles treatment). Hydroalcoholic (G-H-CuNPs) and aqueous (G-A-CuNPs) Rosmarinus officinalis extracts were used for green synthesis. Here, Ch-NPs showed much less nuclear maturation and survival rate (44.92 ± 4.52; 66.21 ± 6.22) than the control (73.36 ± 7.40; 89.33 ± 4.40), respectively (P < 0.001). In contrast, G-H-CuNPs treated oocytes exhibited a significant increase (72.28 ± 5.51; 79.37 ± 6.29) compared to the Ch-NPs (P < 0.05). The level of ROS in Ch-NPs exposed oocytes was significantly higher than in the control (P < 0.001). The fertilization rate exhibited a significant elevation in the G-H-CuNPs (96.00 ± 2.45) compared to the control (71.14 ± 5.20) and Ch-NPs (50.00 ± 0.01) (P < 0.05). The 8-cell and blastocyst (BL) rates in the G-H-CuNPs (70.32 ± 3.78) revealed notably higher than those in the control (64.29 ± 3.69) and Ch-NPs (36.67 ± 10.22) (P < 0.05). In summary, results exhibited that G-CuNPs promote mouse oocyte maturation, fertilization, and embryo development more than Ch-NPs. The follow-up studies propose looking into the safety and applicability of green-synthesized CuNPs in human-assisted reproductive technologies.
Collapse
Affiliation(s)
- Parisa Bagheshzadeh
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Farzaneh Baniasadi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Maryam Mohammadikish
- Department of Inorganic Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, Iran
| |
Collapse
|
2
|
Zhu Z, Song M, Ren J, Liang L, Mao G, Chen M. Copper homeostasis and cuproptosis in central nervous system diseases. Cell Death Dis 2024; 15:850. [PMID: 39567497 PMCID: PMC11579297 DOI: 10.1038/s41419-024-07206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024]
Abstract
Copper (Cu), an indispensable micronutrient for the sustenance of living organisms, contributes significantly to a vast array of fundamental metabolic processes. The human body maintains a relatively low concentration of copper, which is mostly found in the bones, liver, and brain. Despite its low concentration, Cu plays a crucial role as an indispensable element in the progression and pathogenesis of central nervous system (CNS) diseases. Extensive studies have been conducted in recent years on copper homeostasis and copper-induced cell death in CNS disorders, including glioma, Alzheimer's disease, Amyotrophic lateral sclerosis, Huntington's disease, and stroke. Cuproptosis, a novel copper-induced cell death pathway distinct from apoptosis, necrosis, pyroptosis, and ferroptosis, has been identified as potentially intricately linked to the pathogenic mechanisms underlying various CNS diseases. Therefore, a systematic review of copper homeostasis and cuproptosis and their relationship with CNS disorders could deepen our understanding of the pathogenesis of these diseases. In addition, it may provide new insights and strategies for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Zhipeng Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurosurgery, Shangrao People's Hospital, Shangrao, China
| | - Min Song
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Jianxun Ren
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Lirong Liang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Guohua Mao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Min Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
3
|
Lin J, Wang L, Huang M, Xu G, Yang M. Metabolic changes induced by heavy metal copper exposure in human ovarian granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117078. [PMID: 39305777 DOI: 10.1016/j.ecoenv.2024.117078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/17/2024]
Abstract
Copper (Cu) is a common heavy metal and a hazardous environmental pollutant. Emerging epidemiological evidence suggests that Cu exposure is associated with female infertility, especially ovarian dysfunction. However, the mechanisms underlying ovarian toxicity remain poorly understood. Granulosa cells play crucial roles in follicle development and are the main target cells of environmental pollutants for ovarian toxicity. In this study, we investigated the effects of Cu exposure on human granulosa (KGN) cells by using cell biology and metabolomics methods, and explored the molecular mechanisms of Cu-induced cytotoxicity. We found that Cu reduced cell viability in a dose- and time-dependent manner. Then, metabolomic analyses led to the identification of 279, 368 and 466 differentially expressed metabolites (DEMs) in KGN cells exposed to 10, 60 and 240 μM Cu, respectively. Pathway enrichment analysis revealed that high Cu led to disturbances of glutathione metabolism, nucleotide metabolism, glycerophospholipid and ether lipid metabolism. Using cell biological assays, we found that exposure to high Cu significantly decreased the GSH/GSSG ratio and altered the activities of the antioxidant enzymes SOD and CAT. Exposure to high Cu significantly increased the level of mitochondrial ROS. These findings further supported the results revealed by metabolomic analysis and provided clues for elucidating the mechanism by which Cu interferes with the development of ovarian follicles.
Collapse
Affiliation(s)
- Jiaru Lin
- Sichuan Clinical Research Center for Nephropathy, Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ling Wang
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mingquan Huang
- Sichuan Treatment Center for Gynaecologic and Breast Diseases (Breast Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guofeng Xu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Meng Yang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Pan C, Ji Z, Wang Q, Zhang Z, Wang Z, Li C, Lu S, Ge P. Cuproptosis: Mechanisms, biological significance, and advances in disease treatment-A systematic review. CNS Neurosci Ther 2024; 30:e70039. [PMID: 39267265 PMCID: PMC11392831 DOI: 10.1111/cns.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Copper is an essential trace element for biological systems, as it plays a critical role in the activity of various enzymes and metabolic processes. However, the dysregulation of copper homeostasis is closely associated with the onset and progression of numerous diseases. In recent years, copper-induced cell death, a novel form of cellular demise, has garnered significant attention. This process is characterized by the abnormal accumulation of intracellular copper ions, leading to cellular dysfunction and eventual cell death. Copper toxicity occurs through the interaction of copper with acylated enzymes in the tricarboxylic acid (TCA) cycle. This interaction results in subsequent protein aggregation, causing proteotoxic stress and ultimately resulting in cell death. Despite the promise of these findings, the detailed mechanisms and broader implications of cuproptosis remain underexplored. Therefore, our study aimed to investigate the role of copper in cell death and autophagy, focusing on the molecular mechanisms of cuproptosis. We also aimed to discuss recent advancements in copper-related research across various diseases and tumors, providing insights for future studies and potential therapeutic applications. MAIN BODY This review delves into the biological significance of copper metabolism and the molecular mechanisms underlying copper-induced cell death. Furthermore, we discuss the role of copper toxicity in the pathogenesis of various diseases, emphasizing recent advancements in the field of oncology. Additionally, we explore the therapeutic potential of targeting copper toxicity. CONCLUSION The study highlights the need for further research to explore alternative pathways of copper-induced cell death, detailed mechanisms of cuproptosis, and biomarkers for copper poisoning. Future research should focus on exploring the molecular mechanisms of cuproptosis, developing new therapeutic strategies, and verifying their safety and efficacy in clinical trials.
Collapse
Affiliation(s)
- Chengliang Pan
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Zhilin Ji
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Qingxuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Zhao Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Zhenchuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
5
|
Tang W, Zhu X, Chen Y, Yang S, Wu C, Chen D, Xue L, Guo Y, Dai Y, Wei S, Wu M, Wu M, Wang S. Towards prolonging ovarian reproductive life: Insights into trace elements homeostasis. Ageing Res Rev 2024; 97:102311. [PMID: 38636559 DOI: 10.1016/j.arr.2024.102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Ovarian aging is marked by a reduction in the quantity and quality of ovarian follicles, leading to a decline in female fertility and ovarian endocrine function. While the biological characteristics of ovarian aging are well-established, the exact mechanisms underlying this process remain elusive. Recent studies underscore the vital role of trace elements (TEs) in maintaining ovarian function. Imbalances in TEs can lead to ovarian aging, characterized by reduced enzyme activity, hormonal imbalances, ovulatory disorders, and decreased fertility. A comprehensive understanding of the relationship between systemic and cellular TEs balance and ovarian aging is critical for developing treatments to delay aging and manage age-related conditions. This review consolidates current insights into TEs homeostasis and its impact on ovarian aging, assesses how altered TEs metabolism affects ovarian aging, and suggests future research directions to prolong ovarian reproductive life. These studies are expected to offer novel approaches for mitigating ovarian aging.
Collapse
Affiliation(s)
- Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Xiaoran Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Shuhong Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Mingfu Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| |
Collapse
|
6
|
Juliana Ribeiro Dolenga C, Dos Anjos A, José Arruda E, Beltrão Molento M. Copper chloride and copper sulphate in combination with nitroxynil against gastrointestinal nematodes of ruminants: A possible hitchhiking synergic effect at low concentrations. Int J Parasitol 2023; 53:177-183. [PMID: 36657612 DOI: 10.1016/j.ijpara.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 01/18/2023]
Abstract
Infections caused by Haemonchus spp. and Trichostrongylus spp. are major health problems for sheep and cattle. The objective of this study was to determine the efficacy of copper chloride (CuCl2), and copper sulphate (CuSO4) at 2.0, 7.0, 30.0, 125.0, 500.0, and 2000.0 µM formulations, and nitroxynil 34% (NTX) at 0.235 mM against gastrointestinal nematodes (GINs) of ruminants. Hence, the in vitro egg hatch test (EHT), the larval development test (LDT), and the larval migration inhibition test (LMIT) were used. Haemonchus spp. (52%) and Trichostrongylus spp. (38%) were the most frequently found parasites. The data fitted a concentration-dependent shape with the highest efficacies of CuCl2 and CuSO4 at 95.2 and 97.3% for parasites collected from sheep, and 95.8 and 93.4% from cattle, respectively. The combination of the 50% inhibitory concentration (IC50) of CuCl2 and CuSO4 and the IC10 of NTX showed up to a 52% increase in efficacy above the expected additive results, demonstrating a synergic/drug enhancer interaction. NTX may retain Cu-II ions by complexation, in a hitchhiking mechanism carrying the salts across the parasite cell wall, causing oxidative stress as a consequence of free radical production and cell damage. Synergy data between NTX and CuCl2, and CuSO4 represent a viable opportunity to develop new formulations for combating parasites of ruminants (i.e., Fasciola hepatica, Haemonchus spp., and Oesophagostomum spp.).
Collapse
Affiliation(s)
- Carla Juliana Ribeiro Dolenga
- Laboratory of Veterinary Clinical Parasitology, Department of Veterinary Medicine, Federal University of Parana, Rua dos Funcionários 1540, CEP: 80.035-050 Curitiba, PR, Brazil
| | - Alan Dos Anjos
- Laboratory of Veterinary Clinical Parasitology, Department of Veterinary Medicine, Federal University of Parana, Rua dos Funcionários 1540, CEP: 80.035-050 Curitiba, PR, Brazil
| | - Eduardo José Arruda
- Technology Development Center/Laboratory of Polymers and Bioactive Products and Biomolecules, Federal University of Grande Dourados, Rod. Dourados-Itahum, km 12, CEP: 79.804-970 Dourados, MS, Brazil
| | - Marcelo Beltrão Molento
- Laboratory of Veterinary Clinical Parasitology, Department of Veterinary Medicine, Federal University of Parana, Rua dos Funcionários 1540, CEP: 80.035-050 Curitiba, PR, Brazil.
| |
Collapse
|
7
|
Li C, Ma L, Qi T, Pan W, Huang Y, Luo J, Ye X, Lan Y, Liu J, Zhou W, Ruan F, Zhou J. Urinary trace elements in association with premature ovarian insufficiency and reproductive hormones in a Chinese population. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112731. [PMID: 34488147 DOI: 10.1016/j.ecoenv.2021.112731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Homeostasis disturbance of trace elements has been linked to adverse reproductive consequences, including premature ovarian insufficiency (POI) in women, but limited evidence has been reported so far. This case-control study evaluated the associations between 5 common urinary trace elements [copper (Cu), manganese (Mn), Iron (Fe), Selenium (Se), and zinc (Zn)] and the odds for POI. Urinary concentrations of these 5 metals and serum levels of POI-related reproductive hormones of 169 cases and 209 healthy controls were measured. The urinary levels of Cu and Se in women with POI were significantly higher than those in the controls. The positive associations were observed between Cu levels and the odds of POI [for the medium tertile: odds ratio (OR) = 3.79, 95% CI: 1.98-7.27, p < 0.001; for the highest tertile: OR = 3.85, 95% CI: 2.00-7.41, p < 0.001]. The highest tertile of urinary Se levels was associated with increasing POI risk (for the highest tertile: OR = 2.54, 95% CI: 1.38-4.70, compared with the lowest tertile, p for trend = 0.001). In POI patients, urinary concentrations of Zn and Fe were negatively associated with serum levels of follicle-stimulating hormone (FSH). Our findings suggested that higher exposure levels of Cu and Se might lead to an increased risk of POI.
Collapse
Affiliation(s)
- Chunming Li
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - LinJuan Ma
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Tongyun Qi
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Wuye Pan
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Huang
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Jie Luo
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Xiaoqing Ye
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yibing Lan
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenchao Zhou
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China; Cixi People's Hospital Medical and Health Group, China
| | - Fei Ruan
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| | - Jianhong Zhou
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
8
|
Disorders of the Reproductive Health of Cattle as a Response to Exposure to Toxic Metals. BIOLOGY 2021; 10:biology10090882. [PMID: 34571759 PMCID: PMC8467698 DOI: 10.3390/biology10090882] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022]
Abstract
The aim of this review is to comprehensively present disorders of the reproductive system in cattle exposed to contact with toxic metals. Toxic metals are a common environmental pollutant and can come from mines, smelters, fossil fuel combustion, or volcanic eruptions. Metals have the ability to bioaccumulate in living organisms, thus contaminating the food chain and may pose a threat to humans. They accumulate mainly in the liver and kidneys, but also in muscles and fat tissue. Toxic metals such as lead (Pb), arsenic (As), mercury (Hg), and cadmium (Cd) have a negative impact on the fertility of animals; they can lead to abortions, premature calving, or oocyte dysfunction. Moreover, in the male reproductive system, they disrupt spermatogenesis, and cause apoptosis of sperm and oxidative damage. The main source of exposure of livestock to toxic metals is through the consumption of feed or contaminated water. It is important to monitor the level of heavy metals in animal products to prevent human poisoning. Toxic metal biomonitoring can be performed by testing urine, blood, milk, plasma, or hair. Chromium (Cr), arsenic (As), and cadmium (Cd) are excreted in the urine, while lead can be detected by examining the blood of animals, while in milk, arsenic (As), cadmium (Cd), nickel (Ni), and lead (Pb) can be detected. Moreover, toxic metals do not biodegrade in the environment. To purify soil and waters, remediation methods, e.g., biological or chemical, should be used.
Collapse
|
9
|
Impacts of Bovine Trace Mineral Supplementation on Maternal and Offspring Production and Health. Animals (Basel) 2020; 10:ani10122404. [PMID: 33339123 PMCID: PMC7765511 DOI: 10.3390/ani10122404] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 12/27/2022] Open
Abstract
Nutritional status can have major implications for animal health and production. Energy balance is easily determined using a body condition scoring system. This allows producers to readily adjust diets to meet an animal's needs. Far less obvious is an animal's trace mineral status, which is typically not assessed until an animal's performance falls below expectation or illness is detected. Trace mineral toxicities and deficiencies can manifest as reduced thriftiness and/or poor reproductive performance, resulting in economic consequences for producers. Maternal mineral status not only impacts dam heath, but also the health of subsequent offspring. Both the oocyte and embryo are susceptible to changes in maternal mineral status. This susceptibility is maintained throughout fetal development via placental control of nutrient transfer to the fetal system. Furthermore, maternal mineral status continues to impact offspring health via colostrum and milk quality. Herein we discuss the roles of trace minerals in bovine reproductive performance, maternal health, colostrum and milk quality, and offspring health.
Collapse
|
10
|
Anchordoquy JP, Anchordoquy JM, Nikoloff N, Gambaro R, Padula G, Furnus C, Seoane A. Cytotoxic and genotoxic effects induced by enrofloxacin-based antibiotic formulation Floxagen ® in two experimental models of bovine cells in vitro: peripheral lymphocytes and cumulus cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2998-3005. [PMID: 30506381 DOI: 10.1007/s11356-018-3776-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
The in vitro effect of enrofloxacin (EFZ) was tested on two experimental somatic bovine cells in vitro: peripheral lymphocytes (PLs) and cumulus cells (CCs). The cytotoxicity and genotoxicity of this veterinary antibiotic were assessed using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays, single-cell gel electrophoresis (SCGE) assay, and cytokinesis-block micronucleus cytome (CBMN cyt) assay. Cells were treated during 24 h, and three concentrations were tested (50 μg/mL, 100 μg/mL, 150 μg/mL). When EFZ was tested in PLs, the results demonstrated that the antibiotic was able to induce cell death and DNA damage with all concentrations. In addition, 50 μg/mL and 100 μg/mL EFZ increased frequencies of micronuclei (MNi). On the other hand, the highest EFZ concentration occasioned cellular cytotoxicity in CCs as evidenced by mitochondrial activity alterations. Nevertheless, EFZ was not able to induce DNA damage and MNi in CCs. These results represent the first experimental evidence of genotoxic and cytotoxic effects exerted by EFZ in bovine PLs and CCs.
Collapse
Affiliation(s)
- Juan Patricio Anchordoquy
- IGEVET, Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET-CONICET LA PLATA), Facultad de Ciencias Veterinarias - UNLP, Universidad Nacional de La Plata - CONICET, Calle 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina
| | - Juan Mateo Anchordoquy
- IGEVET, Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET-CONICET LA PLATA), Facultad de Ciencias Veterinarias - UNLP, Universidad Nacional de La Plata - CONICET, Calle 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina
| | - Noelia Nikoloff
- IGEVET, Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET-CONICET LA PLATA), Facultad de Ciencias Veterinarias - UNLP, Universidad Nacional de La Plata - CONICET, Calle 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina
| | - Rocío Gambaro
- IGEVET, Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET-CONICET LA PLATA), Facultad de Ciencias Veterinarias - UNLP, Universidad Nacional de La Plata - CONICET, Calle 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina
| | - Gisel Padula
- IGEVET, Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET-CONICET LA PLATA), Facultad de Ciencias Veterinarias - UNLP, Universidad Nacional de La Plata - CONICET, Calle 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Naturales y Museo - UNLP, Calle 60 y 122, B1904AMA, La Plata, Buenos Aires, Argentina
| | - Cecilia Furnus
- IGEVET, Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET-CONICET LA PLATA), Facultad de Ciencias Veterinarias - UNLP, Universidad Nacional de La Plata - CONICET, Calle 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina.
- Cátedra de Citología, Histología y Embriología "A", Facultad de Ciencias Médicas - UNLP, Calle 60 y 120, B1904AMA, La Plata, Buenos Aires, Argentina.
| | - Analía Seoane
- IGEVET, Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET-CONICET LA PLATA), Facultad de Ciencias Veterinarias - UNLP, Universidad Nacional de La Plata - CONICET, Calle 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina
| |
Collapse
|
11
|
Tite T, Popa AC, Balescu LM, Bogdan IM, Pasuk I, Ferreira JMF, Stan GE. Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2081. [PMID: 30355975 PMCID: PMC6266948 DOI: 10.3390/ma11112081] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/13/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022]
Abstract
High-performance bioceramics are required for preventing failure and prolonging the life-time of bone grafting scaffolds and osseous implants. The proper identification and development of materials with extended functionalities addressing socio-economic needs and health problems constitute important and critical steps at the heart of clinical research. Recent findings in the realm of ion-substituted hydroxyapatite (HA) could pave the road towards significant developments in biomedicine, with an emphasis on a new generation of orthopaedic and dentistry applications, since such bioceramics are able to mimic the structural, compositional and mechanical properties of the bone mineral phase. In fact, the fascinating ability of the HA crystalline lattice to allow for the substitution of calcium ions with a plethora of cationic species has been widely explored in the recent period, with consequent modifications of its physical and chemical features, as well as its functional mechanical and in vitro and in vivo biological performance. A comprehensive inventory of the progresses achieved so far is both opportune and of paramount importance, in order to not only gather and summarize information, but to also allow fellow researchers to compare with ease and filter the best solutions for the cation substitution of HA-based materials and enable the development of multi-functional biomedical designs. The review surveys preparation and synthesis methods, pinpoints all the explored cation dopants, and discloses the full application range of substituted HA. Special attention is dedicated to the antimicrobial efficiency spectrum and cytotoxic trade-off concentration values for various cell lines, highlighting new prophylactic routes for the prevention of implant failure. Importantly, the current in vitro biological tests (widely employed to unveil the biological performance of HA-based materials), and their ability to mimic the in vivo biological interactions, are also critically assessed. Future perspectives are discussed, and a series of recommendations are underlined.
Collapse
Affiliation(s)
- Teddy Tite
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| | - Adrian-Claudiu Popa
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
- Army Centre for Medical Research, RO-010195 Bucharest, Romania.
| | | | | | - Iuliana Pasuk
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| | - José M F Ferreira
- Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - George E Stan
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| |
Collapse
|