1
|
Ganzerla MD, Indolfo NDC, Oliveira LCM, Doratioto TR, Avelino TM, de Azevedo RJ, Tofani LB, Terra MF, Elias GB, de Sousa IL, Alborguetti MR, Rocco SA, Arroteia KF, Figueira ACM. Unveiling the intricacies of BPA and BPS: comprehensive insights into its toxic effects using a cutting-edge microphysiological system. Toxicol In Vitro 2024; 98:105849. [PMID: 38772494 DOI: 10.1016/j.tiv.2024.105849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Concerns over Bisphenol A (BPA) and its substitute, Bisphenol S (BPS), have led to innovative exploration due to potential adverse health effects. BPS, replacing BPA in some regions to avoid toxic impacts, remains insufficiently studied. Besides this, the organ-on-a-chip technology emerges as a transformative solution in drug discovery and chemiclas toxicity testing, minimizing costs and aligning with ethical standards by reducing reliance on animal models, by integrating diverse tissues and dynamic cell environments enhances precision in predicting organ function. Here, we employ a 3-organ-on-a-chip microfluidic device with skin, intestine, and liver cultures to assess the effects of BPA and BPS via topical and oral administration. Our evaluation focused on gene markers associated with carcinogenicity, systemic toxicity, and endocrine disruption. BPA exhibited expected absorption profiles, causing liver injury and genetic modulation in related pathways. BPS, a safer alternative, induced adverse effects on gene expression, particularly in topical absorption, with distinct absorption patterns. Our findings underscore the urgency of addressing BPA and BPS toxicity concerns, highlighting the crucial role of organ-on-a-chip technology in understanding associated health risks. The study promotes the organ-on-a-chip methodology as a valuable tool for safe drug development and disease treatments, offering a novel liver toxicity screening alternative to traditional animal tests. This contributes to advancing comprehension of the biological effects of these compounds, fostering improved safety assessments in human health.
Collapse
|
2
|
Guo S, Zhao Q, Li Y, Chu S, He F, Li X, Sun N, Zong W, Liu R. Potential toxicity of bisphenol A to α-chymotrypsin and the corresponding mechanisms of their binding. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121910. [PMID: 36167003 DOI: 10.1016/j.saa.2022.121910] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor widely existing in plastics and resins, which can accumulate in animals and human bodies, posing a potential threat to the physiological and biochemical reactions of human beings or other organisms. α-Chymotrypsin is a kind of proteolytic enzyme existing in humans and animals, which can cause diseases when its activity is excessive. However, there is a lack of research on the mechanism of endocrine disruptors affecting α-chymotrypsin activity. In this study, the interaction between BPA and α-chymotrypsin was proved via multiple spectroscopic approaches, enzyme activity change, isothermal titration calorimetry and molecular docking. Results showed that α-chymotrypsin's polypeptide chains were unfolded, and protein skeletons were loosened with the exposure to BPA. α-Helix content increased and β-sheet content was decreased. The particle size of the BPA-α-chymotrypsin complex became smaller. Fluorescence sensitization may also be explained by a perturbation of the chromophore Trp 141. The thermodynamic parameters of the binding reaction were measured by isothermal titration calorimetry (ITC), which showed that there was hydrophobic interaction between BPA and α-chymotrypsin, which was consistent with the results of molecular docking. Moreover, BPA may stop near the active center of α-chymotrypsin and interact with the key residues His 57 and Ser 195. The above phenomenon explained the result that the activity of α-chymotrypsin increased to 139% when exposed to high dose BPA (40 μM). Taken together, the effects of BPA on the structure and function of α-chymotrypsin were clarified at the molecular level, which made up the gap in the mechanism of BPA on the proteolytic enzyme, and provided a reliable basis for disease avoidance and prevention.
Collapse
Affiliation(s)
- Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Qiang Zhao
- Shandong Provincial Eco-environment Monitoring Center, 3377 Jingshi Dong Lu, Jinan, Shandong 250100, PR China
| | - Yuze Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shanshan Chu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Ning Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
3
|
Geng W, Xiao X, Zhang L, Ni W, Li N, Li Y. Response and tolerance ability of Chlorella vulgaris to cadmium pollution stress. ENVIRONMENTAL TECHNOLOGY 2022; 43:4391-4401. [PMID: 34278946 DOI: 10.1080/09593330.2021.1950841] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Cadmium, which is widely used in electroplating industry, chemical industry, electronic industry and nuclear industry, is harmful to human health and ecological environment. The effects of Cd at different initial concentrations on biomass, antioxidant enzyme activity and ultrastructure of Chlorella vulgaris were analysed in the present study. The results showed that C. vulgaris maintained a slow-growth trend at 3.0 mg/L Cd, and the peroxidase (POD) enzyme activity reached the highest at this concentration, which indicated that C. vulgaris could resist the oxidative damage of cells by increasing the enzyme activity, so as to improve the tolerance of C. vulgaris to Cd. When the concentration of Cd was 5.0 mg/L, although the activity of the superoxide dismutase enzyme was still very high, POD enzyme could not remove the hydrogen peroxide produced in cells in time, leading to cell damage and even death. Therefore, when the concentration reached 5.0 mg/L, the growth of C. vulgaris began to decline after four days of stress, and the cell structure was significantly damaged after six days of stress. And the higher concentration of Cd caused more Cd accumulation in cells and a serious damage to C. vulgaris. C. vulgaris can be used as an early warning indicator of Cd pollution, and it can be used for bioremediation of Cd contaminated water through tolerant subculture.
Collapse
Affiliation(s)
- Weiwei Geng
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Xinfeng Xiao
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Linlin Zhang
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Weiming Ni
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Na Li
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Yanjun Li
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
4
|
Thakur K, Goud ESK, Jawa Y, Keswani C, Onteru S, Singh D, Singh SP, Roy P, Tyagi RK. Detection of endocrine and metabolism disrupting xenobiotics in milk-derived fat samples by fluorescent protein-tagged nuclear receptors and live cell imaging. Toxicol Mech Methods 2022; 33:293-306. [PMID: 36154553 DOI: 10.1080/15376516.2022.2128704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Nuclear receptors (NRs) are ligand-modulated transcription factors that regulate multiple physiological functions in our body. Many NRs in their unliganded state are localized in cytoplasm. The ligand-inducible nuclear translocation of NRs provides a valuable tool for studying the NR-ligand interactions and their downstream effects. The translocation response of NRs can be studied irrespective of the nature of the interacting ligand (agonist, antagonist, or a small molecule modulator). These nuclear translocation studies offer an advantage over promoter-reporter-based transcription assays where transcription response is observed only with the activating hormones or agonistic ligands. Globally, milk serves as a major dietary source. However, suspected presence of endocrine/metabolism disrupting chemicals like bisphenols, parabens, organochlorine pesticides, carbamates, non-steroidal anti-inflammatory drugs, chloramphenicol, brominated flame retardants, etc. has been reported. Considering that these chemicals may impart serious developmental and metabolism-related health concerns, it is essential to develop assays suitable for the detection of xenobiotics present at differing levels in milk. Since milk samples cannot be used directly on cultured cells or for microscopy, a combination of screening strategies has been developed herein based on the revelation that i) lipophilic NR ligands can be successfully retrieved in milk-fat; ii) milk-fat treatment of cells is compatible with live-cell imaging studies; and finally, iii) treatment of cells with xenobiotics-spiked and normal milk derived fat provides a visual and quantifiable response of NR translocation in living cells. Utilizing a milk-fat extraction method and Green Fluorescent Protein (GFP) tagged NRs expressed in cultured mammalian cells, followed by an assessment of NR response proved to be an effective approach for screening xenobiotics present in milk samples.HighlightsDiverse endocrine and metabolism disrupting chemicals are suspected to contaminate milk.Nuclear receptors serve as 'xenosensors' for assessing the presence of xenobiotics in milk.Nuclear import of steroid receptors with (ant)agonist can be examined in live cells.Lipophilic xenobiotics are extracted and observed enriched in milk-fat fraction.A comprehensive cell-based protocol aids in the detection of xenobiotics in milk.
Collapse
Affiliation(s)
- Keshav Thakur
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | | | - Yashika Jawa
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Chetan Keswani
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Suneel Onteru
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal-132001, Haryana, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal-132001, Haryana, India
| | - Surya P Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee-247667, Uttarakhand, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| |
Collapse
|
5
|
|
6
|
Xiang D, Hou X. Exploring the toxic interactions between Bisphenol A and glutathione peroxidase 6 from Arabidopsis thaliana. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119891. [PMID: 33984715 DOI: 10.1016/j.saa.2021.119891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
As primary industrial raw material, the widespread usage of bisphenol A (BPA) has resulted in sustained release and accumulation in the environment. Besides its endocrine-disrupting character, BPA was reported to generate excessive reactive oxygen species (ROS). However, the potential toxic mechanisms of the BPA-induced oxidative damage to plants were poorly understood. In this study, glutathione peroxidase 6 from Arabidopsis thaliana (AtGPX6) was regarded as biomarker to investigate the toxic effects of BPA on plants by multi-spectroscopic techniques and molecular docking method. Firstly, BPA effectively quenched the intrinsic fluorescence of AtGPX6 via static quenching mechanism, and a single binding site of AtGPX6 towards BPA was presumed. Moreover, the binding force was mainly driven by van der Waals forces and hydrogen bonding based on the negative values of ΔH0 and ΔS0, which was consistent with the molecular docking result. In addition, the conformational changes of AtGPX6 accompanied with the enhancement of the hydrophilicity around the tryptophan residues upon the combination with BPA, were evaluated through the combination of the fluorescence, UV-visible absorption and Circular dichroism (CD) spectroscopy. Finally, the inhibitory impact on the development of Arabidopsis seedling roots was observed under BPA exposure. Therefore, the exploration of the molecular mechanism of AtGPX6 with BPA would provide valuable assessments on the toxic effects of BPA on plants.
Collapse
Affiliation(s)
- Dongmei Xiang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaomin Hou
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
7
|
Evaluation of interactions between food colorant, tartrazine, and Apo-transferrin using spectroscopic analysis and docking simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116715] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Tang SF, Hou X. Probing the toxic interactions between bisphenol A and glutathione S-transferase Phi8 from Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112029. [PMID: 33578103 DOI: 10.1016/j.ecoenv.2021.112029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
As primary polymer material in industrial products, bisphenol A (BPA) has become one of the most productive chemicals. Excluding its endocrine-disrupting property, BPA can also produce excessive reactive oxygen species (ROS). Nevertheless, the underlying toxic mechanisms of BPA-induced oxidative damages to plants are still unknown. In this work, glutathione S-transferase Phi8 was used as biomarker to evaluate the hazardous oxidative effects of BPA at the molecular level. Firstly, the intrinsic fluorescence of AtGSTF8 was statically quenched along with complex formation and structural and conformational changes, which led to the loosening and unfolding of the framework of AtGSTF8 as well as the increase of hydrophilicity around Trp residues. Then a single binding site was predicted for AtGSTF8 towards BPA and the complex formation was predominantly driven by hydrophobic interactions owing to the positive ΔH and ΔS. Besides, the predicted binding site of BPA was close to the H-site of AtGSTF8 which was surrounded by several hydrophobic amino acids based on the molecular docking results. The activity of glutathione S-transferase was declined and the plant growth was destroyed upon complex formation. The investigation of the binding mechanism of BPA with AtGSTF8 at molecular level would provide experimental assessments on toxicological effects of BPA on plants.
Collapse
Affiliation(s)
- Si-Fu Tang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaomin Hou
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
9
|
Sun N, Li M, Liu G, Jing M, He F, Cao Z, Zong W, Tang J, Gao C, Liu R. Toxic mechanism of pyrene to catalase and protective effects of vitamin C: Studies at the molecular and cell levels. Int J Biol Macromol 2021; 171:225-233. [PMID: 33418042 DOI: 10.1016/j.ijbiomac.2020.12.169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022]
Abstract
Polycyclic aromatic hydrocarbons, distributing extensively in the soil, would potentially threaten the soil organisms (Eisenia fetida) by triggering oxidative stress. As a ubiquitous antioxidant enzyme, catalase can protect organisms from oxidative damage. To reveal the potential impact of polycyclic aromatic hydrocarbon pyrene (Pyr) on catalase (CAT) and the possible protective effect of Ascorbic acid (vitamin C), multi-spectral and molecular docking techniques were used to investigate the influence of structure and function of catalase by pyrene. Fluorescence and circular dichroism analysis showed that pyrene would induce the microenvironmental changes of CAT amino acid residues and increase the α-helix in the secondary structure. Molecular simulation results indicated that the main binding force of pyrene around the active center of CAT is hydrogen bonding force. Furthermore, pyrene inhibited catalase activity to 69.9% compared with the blank group, but the degree of inhibition was significantly weakened after vitamin C added into the research group. Cell level experiments showed that pyrene can increase the level of ROS in the body cavity cell of earthworms, and put the cells under the threat of potential oxidative damage. Antioxidants-vitamin C has a protective effect on catalase and maintains the stability of intracellular ROS levels to a certain extent.
Collapse
Affiliation(s)
- Ning Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Meifei Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Guiliang Liu
- Shandong Institute for Food and Drug Control, Jinan 250101, PR China
| | - Mingyang Jing
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Zhaozhen Cao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Canzhu Gao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
10
|
Zou L, Zhang X, Shao M, Sun R, Zhu Y, Zou B, Huang Z, Liu H, Teng Y. A biophysical probe on the binding of 2-mercaptothioazoline to bovine hemoglobin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:208-214. [PMID: 30387064 DOI: 10.1007/s11356-018-3405-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
2-Mercaptothiazoline (MTZ) is broadly present in daily use as an antifungal reagent, a brightening agent, and a corrosion inhibitor. MTZ is potentially harmful for human health. Although the toxic effects of MTZ on experimental animals have been reported, the effects of MTZ on the proteins in the circulatory system at the molecular level have not been identified previously. Here, we explored the interaction of MTZ with bovine hemoglobin (BHb) in vitro using multiple spectroscopic techniques and molecular docking. In this study, the binding capacity, acting force, binding sites, molecular docking simulation, and conformational changes were investigated. MTZ quenched the intrinsic emission of BHb via the static quenching process and could spontaneously bind with BHb mainly through van der Waals forces and hydrogen bond. The computational docking visualized that MTZ bound to the β2 subunit of BHb, which further led to some changes of the skeleton and secondary structure of BHb. This research provides valuable information about the molecular mechanisms on BHb induced by MTZ and is beneficial for clarifying the toxicological actions of MTZ in blood.
Collapse
Affiliation(s)
- Luyi Zou
- School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyue Zhang
- School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Mingying Shao
- School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Ruirui Sun
- School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Yuting Zhu
- School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Binbin Zou
- School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Zhenxing Huang
- School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China
| | - He Liu
- School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yue Teng
- School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, People's Republic of China.
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|