1
|
Golba S, Kubisztal J. The Influence of Roughness on the Properties of Electroactive Polypyrrole. Molecules 2024; 29:5436. [PMID: 39598824 PMCID: PMC11597700 DOI: 10.3390/molecules29225436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
This study describes the properties of electroactive polypyrrole and its applications, with a focus on the roughness of the material. This parameter is crucial as it influences the applicability of coated layers, leading to highly adherent coatings or programmed wettability. The first raised aspect covers the electrodeposition procedure, which can help tailor the desired smoothness determined by roughness parameters. Features such as the deposition method, synthetic solution components, potential boundaries, substrate type, and utilized additives are evaluated. In the following section, the application aspects are discussed with a focus on modern, currently developed subjects such as medical applications, including cell-adherent coatings, antibacterial coatings, and drug delivery modules, as well as more technological fields like improved adhesion to the substrate and the improved mechanical properties of the deposited coating.
Collapse
Affiliation(s)
- Sylwia Golba
- Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty Street 1A, 41-500 Chorzow, Poland;
| | | |
Collapse
|
2
|
Waldman L, Haunert DP, Carson JD, Weiskopf N, Waldman JV, LeBlanc G. Maintaining Electrochemical Performance of Flexible ITO-PET Electrodes under High Strain. ACS OMEGA 2024; 9:29732-29738. [PMID: 39005794 PMCID: PMC11238234 DOI: 10.1021/acsomega.4c03288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024]
Abstract
Flexible electrode materials, particularly indium tin oxide (ITO)-coated polyethylene terephthalate (PET), have attracted the attention of researchers for a wide variety of applications. However, there has been limited attention to the effects of electrode flexibility during electrochemical processes. In this research article, we studied how bending commercially available ITO-PET electrodes impacts the electrodeposition process of polyaniline (PANI). Thicker ITO layers start cracking at a normalized strain of 0.10 (bending radius of 10 mm), and cracking becomes detrimental to full deposition at a normalized strain of 0.16 or higher (bending radius of 6 mm or lower). Thinner ITO layers were evaluated as electrodes in electrochemical applications; however, the higher resistance of these electrodes prevented uniform electrodeposition of PANI. In order to overcome the issues of cracking, conductive thin films and copper tape were explored as low-cost methods for electrically bridging cracks in the electrode. While conductive thin films reduced the resistance effect, copper tape was found to fully restore the original electrochemical activity as measured by chronoamperometry and enable uniform electrodeposition at a bending radius as low as 3 mm. This strategy was then demonstrated by performing electrochromic bleaching of PANI under high-strain conditions. These studies illustrate some of the limitations of ITO-PET electrodes and strategies for overcoming these limitations for future applications that require a high degree of flexibility in a transparent electrode substrate.
Collapse
Affiliation(s)
- Laura
J. Waldman
- Mechanical
Engineering, University of Tulsa, 800 S Tucker Dr., Tulsa, Oklahoma 74104-9700, United States
| | - Daniel P. Haunert
- Chemistry
and Biochemistry, University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104, United States
| | - Jack D. Carson
- Chemistry
and Biochemistry, University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104, United States
| | - Nate Weiskopf
- Chemistry
and Biochemistry, University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104, United States
| | - Julia V. Waldman
- Chemistry
and Biochemistry, University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104, United States
| | - Gabriel LeBlanc
- Chemistry
and Biochemistry, University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104, United States
| |
Collapse
|
3
|
Sarangi AK, Tripathy L, Ansari A, Mohapatra RK, Bhoi SK. Enhancing conductivity in polymers: The role of metal ions in conducting polymer systems. POLYM ADVAN TECHNOL 2024; 35. [DOI: 10.1002/pat.6505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/28/2024] [Indexed: 02/12/2025]
Abstract
AbstractAs metal ion inclusion has a substantial effect on conducting polymer's mechanical, optical, and electrical properties, it has attracted a lot of attention. This article delves into the complex role of metal ions in conducting polymers, explaining how they affect functionality, structural stability, and conductivity enhancement. The review starts with a synopsis of conducting polymers and doping processes before diving into the particular ways that metal ions interact with polymer matrices to alter their electronic structure and charge transport characteristics. The importance of characterization techniques in comprehending the structure–property correlations is highlighted in the discussion of metal‐ion doped conducting polymer studies. In addition, the paper looks at the uses of conducting polymers doped with metal ions in numerous sectors, including energy storage, electronics, and sensors. The difficulties in attaining accurate control over doping concentrations and guaranteeing stability over an extended period are discussed, as well as potential avenues for future development in this area. This review offers important insights into the development and optimization of functional materials for a variety of applications by thoroughly investigating the function of metal ions in conducting polymers.
Collapse
Affiliation(s)
- Ashish K. Sarangi
- Department of Chemistry Centurion University of Technology and Management Balangir India
| | - Lizaranee Tripathy
- Department of Chemistry Centurion University of Technology and Management Balangir India
| | - Azaj Ansari
- Department of Chemistry Central University of Haryana Mahendergarh India
| | | | - Sushil Kumar Bhoi
- Department of Electrical Engineering Government College of Engineering Kalahandi Bhawanipatna India
| |
Collapse
|
4
|
Golba S, Loskot J. The Alphabet of Nanostructured Polypyrrole. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7069. [PMID: 38004999 PMCID: PMC10672593 DOI: 10.3390/ma16227069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023]
Abstract
This review is devoted to polypyrrole and its morphology, which governs the electroactivity of the material. The macroscopic properties of the material are strictly relevant to microscopic ordering observed at the local level. During the synthesis, various (nano)morphologies can be produced. The formation of the ordered structure is dictated by the ability of the local forces and effects to induce restraints that help shape the structure. This review covers the aspects of morphology and roughness and their impact on the final properties of the modified electrode activity in selected applications.
Collapse
Affiliation(s)
- Sylwia Golba
- Institute Materials Engineering, University of Silesia, 75 Pulku Piechoty Street 1A, 41-500 Chorzow, Poland
| | - Jan Loskot
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic;
| |
Collapse
|
5
|
Mohamad Nor N, Nasrul SN, Zakaria ND, Abdul Razak K. Simultaneous Sensing of Cd(II), Pb(II), and Cu(II) Using Gold Nanoparticle-Modified APTES-Functionalized Indium Tin Oxide Electrode: Effect of APTES Concentration. ACS OMEGA 2023; 8:16587-16599. [PMID: 37214679 PMCID: PMC10193388 DOI: 10.1021/acsomega.2c07085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
In this work, indium tin oxide (ITO) electrodes were functionalized with varying 3-aminopropyltriethoxysilane (APTES) concentration percentages (0.5, 0.75, 1.0, and 2.0 wt %) to obtain the optimum conditions for the assembly of the as-synthesized gold nanoparticles (AuNPs). The AuNP coverage, wettability, and electrochemical performance of the modified electrodes were evaluated. The AuNP/0.75% APTES-ITO-modified electrode exhibited uniform coverage of AuNPs and high electrochemical performance for the simultaneous detection of Cd(II), Pb(II), and Cu(II) ions. Under the optimum conditions, the AuNP/0.75% APTES-ITO-modified electrode showed a linear detection range of 5-120 ppb and limit of detection of 0.73, 0.90, and 0.49 ppb for the simultaneous detection of Cd(II), Pb(II), and Cu(II) ions, respectively, via square wave anodic stripping voltammetry. The modified electrode demonstrated good anti-interference toward other heavy metal ions, good reproducibility, and suitability for application in environmental sample analysis.
Collapse
Affiliation(s)
- Noorhashimah Mohamad Nor
- School
of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Siti Nasirah Nasrul
- School
of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Nor Dyana Zakaria
- NanoBiotechnology
Research & Innovation (NanoBRI), INFORMM,
Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia
| | - Khairunisak Abdul Razak
- School
of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
- NanoBiotechnology
Research & Innovation (NanoBRI), INFORMM,
Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia
| |
Collapse
|
6
|
Alshawi JS, Mohammed MQ, Alesary HF, Ismail HK, Barton S. Voltammetric Determination of Hg 2+, Zn 2+, and Pb 2+ Ions Using a PEDOT/NTA-Modified Electrode. ACS OMEGA 2022; 7:20405-20419. [PMID: 35722009 PMCID: PMC9202299 DOI: 10.1021/acsomega.2c02682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/24/2022] [Indexed: 06/01/2023]
Abstract
A novel electrochemical sensor for determining trace levels of Hg2+, Pb2+, and Zn2+ ions in water using square wave voltammetry (SWV) is reported. The sensor is based on a platinum electrode (Pt) modified by poly(3,4-ethylenedioxythiophene) and N α,N α-bis-(carboxymethyl)-l-lysine hydrate (NTA lysine) PEDOT/NTA. The modified electrode surface (PEDOT/NTA) was prepared via the introduction of the lysine-NTA group to a PEDOT/N-hydroxyphthalimide NHP electrode. The (PEDOT/NTA) was characterized via cyclic voltammetry (CV), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). The effects of scan rates on the electrochemical properties of the polymer electrode were also investigated. The electrochemical results were used to estimate the coverage of the electrode polymer surface and its electrostability in background electrolyte solutions. Several analytical parameters, such as polymer film thickness, metal deposition time, and pH of the electrolyte, were examined. Linear responses to Hg2+, Pb2+, and Zn2+ ions in the concentration range of 5-100 μg L-1 were obtained. The limits of detection (LODs) for the determination of Hg2+, Pb2+, and Zn2+ ions were 1.73, 2.33, and 1.99 μg L-1, respectively. These promising results revealed that modified PEDOT/NTA films might well represent an important addition to existing electrochemical sensor technologies.
Collapse
Affiliation(s)
- Jasim
M. S. Alshawi
- Department
of Chemistry, College of Education for Pure Sciences, University of Basrah, Basrah 61001, Iraq
| | - Mohammed Q. Mohammed
- Department
of Chemistry, College of Education for Pure Sciences, University of Basrah, Basrah 61001, Iraq
| | - Hasan F. Alesary
- Department
of Chemistry, College of Science, University
of Kerbala, Karbala 56001, Iraq
| | - Hani K. Ismail
- Department
of Chemistry, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region −
F.R., Iraq
| | - Stephen Barton
- School
of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-Upon-Thames KT1 1LQ, Surrey, U.K.
| |
Collapse
|
7
|
Nishitani S, Fukuma T, Himori S, Man Y, Shiratori R, Sakata T. Densification of Diazonium-Based Organic Thin Film as Bioelectrical Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14369-14379. [PMID: 34854684 DOI: 10.1021/acs.langmuir.1c02291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aryl diazonium chemistry generates a covalently attached thin film on various materials. This chemistry has diverse applications owing to the stability, ease of functionalization, and versatility of the film. However, the uncontrolled growth into a polyaryl film has limited the controllability of the film's beneficial properties. In this study, we developed a multistep grafting protocol to densify the film while maintaining a thickness on the order of nanometers. This simple protocol enabled the full passivation of a nitrophenyl polyaryl film, completely eliminating the electrochemical reactions at the surface. We then applied this protocol to the grafting of phenylphosphorylcholine films, with which the densification significantly enhanced the antifouling property of the film. Together with its potential to precisely control the density of functionalized surfaces, we believe this grafting procedure will have applications in the development of bioelectrical interfaces.
Collapse
Affiliation(s)
- Shoichi Nishitani
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Toru Fukuma
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shogo Himori
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Youyuan Man
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Reiko Shiratori
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Toshiya Sakata
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
8
|
Kwon D, Kim J. Ag metal organic frameworks nanocomposite modified electrode for simultaneous electrochemical detection of copper (II) and lead (II). J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01569-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Sall ML, Fall B, Diédhiou I, Dièye EH, Lo M, Diaw AKD, Gningue-Sall D, Raouafi N, Fall M. Toxicity and Electrochemical Detection of Lead, Cadmium and Nitrite Ions by Organic Conducting Polymers: A Review. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s42250-020-00157-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Polypyrrole-Wrapped Carbon Nanotube Composite Films Coated on Diazonium-Modified Flexible ITO Sheets for the Electroanalysis of Heavy Metal Ions. SENSORS 2020; 20:s20030580. [PMID: 31973054 PMCID: PMC7037355 DOI: 10.3390/s20030580] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/18/2020] [Indexed: 12/25/2022]
Abstract
Highly sensitive multicomponent materials designed for the recognition of hazardous compounds request control over interfacial chemistry. The latter is a key parameter in the construction of the sensing (macro) molecular architectures. In this work, multi-walled carbon nanotubes (CNTs) were deposited on diazonium-modified, flexible indium tin oxide (ITO) electrodes prior to the electropolymerization of pyrrole. This three-step process, including diazonium electroreduction, the deposition of CNTs and electropolymerization, provided adhesively-bonded, polypyrrole-wrapped CNT composite coatings on aminophenyl-modified flexible ITO sheets. The aminophenyl (AP) groups were attached to ITO by electroreduction of the in-situ generated aminobenzenediazonium compound in aqueous, acidic medium. For the first time, polypyrrole (PPy) was electrodeposited in the presence of both benzenesulfonic acid (dopant) and ethylene glycol-bis(2-aminoethylether)-tetraacetic acid (EGTA), which acts as a chelator. The flexible electrodes were characterized by XPS, Raman and scanning electron microscopy (SEM), which provided strong supporting evidence for the wrapping of CNTs by the electrodeposited PPy. Indeed, the CNT average diameter increased from 18 ± 2.6 nm to 27 ± 4.8, 35.6 ± 5.9 and 175 ± 20.1 after 1, 5 and 10 of electropolymerization of pyrrole, respectively. The PPy/CNT/NH2-ITO films generated by this strategy exhibit significantly improved stability and higher conductivity compared to a similar PPy coating without any embedded CNTs, as assessed by from electrochemical impedance spectroscopy measurements. The potentiometric response was linear in the 10−8–3 × 10−7 mol L−1 Pb(II) concentration range, and the detection limit was 2.9 × 10−9 mol L−1 at S/N = 3. The EGTA was found to drastically improve selectivity for Pb(II) over Cu(II). To account for this improvement, the density functional theory (DFT) was employed to calculate the EGTA–metal ion interaction energy, which was found to be −374.6 and −116.4 kJ/mol for Pb(II) and Cu(II), respectively, considering solvation effects. This work demonstrates the power of a subtle combination of diazonium coupling agent, CNTs, chelators and conductive polymers to design high-performance electrochemical sensors for environmental applications.
Collapse
|
11
|
Lo M, Diaw AKD, Gningue-Sall D, Oturan MA, Chehimi MM, Aaron JJ. A novel fluorescent sensor based on electrosynthesized benzene sulfonic acid-doped polypyrrole for determination of Pb(II) and Cu(II). LUMINESCENCE 2019; 34:489-499. [PMID: 30972923 DOI: 10.1002/bio.3626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/17/2018] [Accepted: 02/08/2019] [Indexed: 01/22/2023]
Abstract
To develop conducting organic polymers (COPs) as luminescent sensors for determination of toxic heavy metals, a new benzene sulfonic acid-doped polypyrrole (PPy-BSA) thin film was electrochemically prepared by cyclic voltammetry (CV) on flexible indium tin oxide (ITO) electrode in aqueous solution. PPy-BSA film was characterized by FTIR spectrometry, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The optical properties of PPy-BSA were investigated by ultraviolet (UV)-visible absorption and fluorescence spectrometry in dimethylsulfoxide (DMSO) diluted solutions. PPy-BSA fluorescence spectra were strongly quenched upon increasing copper(II) ion (Cu2+ ) and lead(II) ion (Pb2+ ) concentrations in aqueous medium, and linear Stern-Volmer relationships were obtained, which indicated the existence of a main dynamic fluorescence quenching mechanism. BSA-PPy sensor showed a high sensitivity for detection of both metallic ions, Cu2+ and Pb2+ , with very low limit of detection values of 3.1 and 18.0 nM, respectively. The proposed quenching-fluorimetric sensor might be applied to the determination of traces of toxic heavy metallic ions in water samples.
Collapse
Affiliation(s)
- Momath Lo
- Faculté des Sciences, Université Cheikh Anta Diop, Dakar-Fann, Sénégal.,Laboratoire Géomatériaux et Environnement, Université Paris-Est, Marne-la-Vallée Cedex 2, France.,CNRS, ICMPE (UMR 7182), Université Paris Est, Thiais, France
| | - Abdou K D Diaw
- Faculté des Sciences, Université Cheikh Anta Diop, Dakar-Fann, Sénégal
| | | | - Mehmet A Oturan
- Laboratoire Géomatériaux et Environnement, Université Paris-Est, Marne-la-Vallée Cedex 2, France
| | | | - Jean-Jacques Aaron
- Laboratoire Géomatériaux et Environnement, Université Paris-Est, Marne-la-Vallée Cedex 2, France
| |
Collapse
|