1
|
Deng J, Li Z, Li B, Xu C, Wang L, Li Y. Wide Riparian Zones Inhibited Trace Element Loss in Mining Wastelands by Reducing Surface Runoff and Trace Elements in Sediment. TOXICS 2024; 12:279. [PMID: 38668502 PMCID: PMC11053404 DOI: 10.3390/toxics12040279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
The diffusion of trace elements in mining wastelands has attracted widespread attention in recent years. Vegetation restoration is an effective measure for controlling the surface migration of trace elements. However, there is no field evidence of the effective riparian zone width in mining wastelands. Three widths (5 m, 7.5 m, and 10 m) of Rhododendron simsii/Lolium perenne L. riparian zones were constructed in lead-zinc mining wastelands to investigate the loss of soil, cadmium (Cd), copper (Cu), arsenic (As), lead (Pb), and zinc (Zn). Asbestos tiles were used to cut off connections between adjacent plots to avoid hydrological interference. Plastic pipes and containers were used to collect runoff water. Results showed that more than 90% of trace elements were lost in sediment during low coverage and heavy rainfall periods. Compared with the 5 m riparian zone, the total trace element loss was reduced by 69-85% during the whole observation period in the 10 m riparian zone and by 86-99% during heavy rain periods in the 10 m riparian zone, which was due to reduction in runoff and concentrations of sediment and trace elements in the 10 m riparian zone. Indirect negative effects of riparian zone width on trace element loss through runoff and sediment concentration were found. These results indicated that the wide riparian zone promoted water infiltration, filtered soil particles, and reduced soil erosion and trace element loss. Riparian zones can be used as environmental management measures after mining areas are closed to reduce the spread of environmental risks in mining wastelands, although the long-term effects remain to be determined.
Collapse
Affiliation(s)
- Jiangdi Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.D.); (C.X.)
| | - Zuran Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China;
| | - Bo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China; (B.L.); (L.W.)
| | - Cui Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.D.); (C.X.)
| | - Lei Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China; (B.L.); (L.W.)
| | - Yuan Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China; (B.L.); (L.W.)
| |
Collapse
|
2
|
Wang X, Yang X, He W, Zhang S, Song X, Zhang J, Ma J, Chen L, Niu P, Chen T. Single-cell transcriptomics analysis of zebrafish brain reveals adverse effects of manganese on neurogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122908. [PMID: 37952916 DOI: 10.1016/j.envpol.2023.122908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/22/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Manganese (Mn) is considered as an important environmental risk factor for Parkinson's disease. Excessive exposure to Mn can damage various neural cells and affect the neurogenesis, resulting in neurological dysfunction. However, the specific mechanisms of Mn exposure affecting neurogenesis have not been well understood, including compositional changes and heterogeneity of various neural cells. Zebrafish have been successfully used as a neurotoxicity model due to its homology with mammals in several key regions of the brain, as well as its advantages such as small size. We performed single-cell RNA sequencing of zebrafish brains from normal and Mn-exposed groups. Our results suggested that low levels of Mn exposure activated neurogenesis in the zebrafish brain, including promoting the proliferation of neural progenitor cells and differentiation to newborn neurons and oligodendrocytes, while high levels of Mn exposure inhibited neurogenesis and neural function. Mn could affect neurogenesis through specific molecular pathways. In addition, Mn regulated intercellular communication and affected cellular communication in neural cells through specific signaling pathways. Taken together, our study elucidates the cellular composition of the zebrafish brain and adds to the understanding of the mechanisms involved in Mn-induced neurogenesis damage.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xin Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Weifeng He
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Shixuan Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xin Song
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Junrou Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Junxiang Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Li Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Tian Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Bai M, Long G, Wang F. Properties and Microstructural Characteristics of Manganese Tailing Sand Concrete. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5583. [PMID: 36013720 PMCID: PMC9412864 DOI: 10.3390/ma15165583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
In this work, manganese tailing sand concrete (MTSC) was prepared using manganese tailing sand (MTS) in replacement of river sand (RS) to alleviate the shortage of RS resources and achieve clean treatment and high-value resource utilization of manganese tailing stone. The effects of MTS content on the slump, mechanical strength, air void characteristics, hydration products and micromorphology of MTSC were studied experimentally. The leaching risk of harmful substances in MTSC was also explored by testing the concentration of Mn2+. The results show that the utilization of MTS reduces the slump of MTSC to a certain extent. When the MTS content is lower than 40%, the gypsum introduced by MTS and C3A in cement undergoes a hydration reaction to form ettringite, which decreases the number of pores with a diameter less than 0.1 mm and promotes strength development in MTSC. Additionally, when the MTS content exceeds 40%, the large amount of gypsum reacts to form more ettringite. The expansive stress generated by the ettringite severely damages the pore structure, which is not conducive to the mechanical properties of MTSC. In addition, the leaching of hazardous substances in MTSC is insignificant, and the incorporation of cement can effectively reduce the risk of leaching hazardous substances in MTSC. In summary, it is completely feasible to use MTS to replace RS for concrete preparation when the substitution rate of MTS is less than 40%, with no risk of environmental pollution. The results and adaptation in the concrete industry can reduce the carbon footprint, which is in line with the current trend in civil and materials engineering.
Collapse
|
4
|
Zhou Y, Sun K, Mi Y, Luo B, Xiang J, Ma T. Insights into the nurse effect of a native plant Ficus tikoua on Pb‒Zn tailing wastelands in western Hunan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15905-15914. [PMID: 34636001 DOI: 10.1007/s11356-021-16982-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Lead‒zinc (Pb‒Zn) processing and extraction activity generates large volumes of highly toxic and bare tailing (BT) wastelands which poses a potentially extreme risk to the surrounding environment. Revegetation in the Pb‒Zn tailing wastelands is usually considered a beneficial approach. Ficus tikoua is a native vine which can successfully colonize on Maoping Pb‒Zn mine tailing wastelands in western Hunan, China. This study involved examination of the nurse effect of F. tikoua on Pb‒Zn tailing wastelands, to provide insights into the potential mechanism of F. tikoua influencing soil quality and vegetation succession. The vegetation characteristics, nutrient properties, and heavy metal contents of three different types of vegetation patches associated with F. tikoua in Pb‒Zn tailing wastelands, representing different stage of succession, were investigated. The height, coverage, and aboveground and underground biomass of these vegetation patches showed an increasing trend from vegetation patch I (VP-I) to patch III (VP-III). The nutrient pool and chemical properties of these tailing wastelands gradually re-established from BT wasteland to VP-III. From VP-I to VP-III, the total heavy metal contents (i.e., Pb, Zn, Cu, and Cd) and DTPA-extractable Pb, Cu, and Cd contents significantly decreased, while the DTPA-extractable Zn content remained unchanged. Our findings suggested that F. tikoua exerts a distinct nurse plant effect by increasing the essential nutrient content of soil, reducing the available heavy metal content, and subsequently increasing the number of plant species and the biomass. Therefore, F. tikoua may be used as a promising nurse plant for triggering revegetation and phytostabilization of Pb‒Zn tailing wastelands at the initial stage of remediation.
Collapse
Affiliation(s)
- Yingru Zhou
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, People's Republic of China
| | - Kuangnan Sun
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, People's Republic of China
| | - Ying Mi
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, People's Republic of China
| | - Benxiang Luo
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, People's Republic of China
| | - Jing Xiang
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, People's Republic of China
| | - Taowu Ma
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, People's Republic of China.
| |
Collapse
|
5
|
Pajarillo EAB, Lee E, Kang DK. Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:750-761. [PMID: 34466679 PMCID: PMC8379138 DOI: 10.1016/j.aninu.2021.03.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022]
Abstract
Metals such as iron, manganese, copper, and zinc are recognized as essential trace elements. These trace metals play critical roles in development, growth, and metabolism, participating in various metabolic processes by acting as cofactors of enzymes or providing structural support to proteins. Deficiency or toxicity of these metals can impact human and animal health, giving rise to a number of metabolic and neurological disorders. Proper breakdown, absorption, and elimination of these trace metals is a tightly regulated process that requires crosstalk between the host and these micronutrients. The gut is a complex system that serves as the interface between these components, but other factors that contribute to this delicate interaction are not well understood. The gut is home to trillions of microorganisms and microbial genes (the gut microbiome) that can regulate the metabolism and transport of micronutrients and contribute to the bioavailability of trace metals through their assimilation from food sources or by competing with the host. Furthermore, deficiency or toxicity of these metals can modulate the gut microenvironment, including microbiota, nutrient availability, stress, and immunity. Thus, understanding the role of the gut microbiota in the metabolism of manganese, iron, copper, and zinc, as well as in heavy metal deficiencies and toxicities, and vice versa, may provide insight into developing improved or alternative therapeutic strategies to address emerging health concerns. This review describes the current understanding of how the gut microbiome and trace metals interact and affect host health, particularly in pigs.
Collapse
Affiliation(s)
- Edward Alain B. Pajarillo
- Department of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee 32307, FL, USA
| | - Eunsook Lee
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
6
|
Pajarillo E, Nyarko-Danquah I, Adinew G, Rizor A, Aschner M, Lee E. Neurotoxicity mechanisms of manganese in the central nervous system. ADVANCES IN NEUROTOXICOLOGY 2021; 5:215-238. [PMID: 34263091 DOI: 10.1016/bs.ant.2020.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Getinet Adinew
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Asha Rizor
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| |
Collapse
|
7
|
Wu C, An W, Xue S. Element Case Studies: Manganese. MINERAL RESOURCE REVIEWS 2021:425-441. [DOI: 10.1007/978-3-030-58904-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|