1
|
Zhang W, Huang H, Cao Z, Kang S, Shi X, Ma W, Ratnaweera H. Novel Sodium Carbonate Activation for Manufacturing Sludge-Based Biochar and Assessment of Its Organic Adsorption Property in Treating Wool Scouring Wastewater. TOXICS 2025; 13:256. [PMID: 40278572 PMCID: PMC12030839 DOI: 10.3390/toxics13040256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025]
Abstract
Under the concept of green and low-carbon development, efficient and environmentally friendly biochar preparation methods have attracted much attention. This study assessed a novel sodium carbonate activator combined with acid modification for sludge-based biochar (SB) production and its adsorption of organics in wool scouring wastewater. Under 600 °C, the optimal carbonization temperature, the residual weight percentage of biochar carbonized material increases from 27% to 73% after Na2CO3 activation compared to ZnCl2 activation. Compared to HCl-modified ZnCl2-activated biochar (Zn-Cl-SB), HCl-H2SO4-modified Na2CO3-activated biochar (Na-Cl/S-SB) had a specific surface area of 509.3 m2/g, and the average mesopore size was 7.896 nm, with micropore volume and specific surface area increasing by 83.3% and 79.8%, respectively. Meanwhile, the C-O oxygen-containing functional groups and pyrrole nitrogen-containing functional groups were significantly increased. Na-Cl/S-SB exhibited an excellent adsorption performance for organic matter in wool scouring wastewater, with a maximum adsorption capacity of 168.3 mg/g. Furthermore, the adsorption process followed the pseudo-second-order kinetic model. Three-dimensional fluorescence spectrum analysis showed that Na-Cl/S-SB had a strong adsorption capacity for aromatic protein analogs, proteins containing benzene rings, and dissolved microbial by-products in wool scouring wastewater. This study will serve as a guideline for the green synthesis of SB while improving its ability to adsorb pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | - Weiwei Ma
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China; (W.Z.); (H.H.); (Z.C.); (S.K.); (X.S.)
| | - Harsha Ratnaweera
- National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China; (W.Z.); (H.H.); (Z.C.); (S.K.); (X.S.)
| |
Collapse
|
2
|
Mvala B, Munonde TS, Mpupa A, Bambo MF, Matabola KP, Nomngongo PN. Valorization and Upcycling of Acid Mine Drainage and Plastic Waste via the Preparation of Magnetic Sorbents for Adsorption of Emerging Contaminants. ACS OMEGA 2024; 9:34700-34718. [PMID: 39157114 PMCID: PMC11325435 DOI: 10.1021/acsomega.4c03426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024]
Abstract
Plastic waste poses a serious environmental risk, but it can be recycled to produce a variety of nanomaterials for water treatment. In this study, poly(ethylene terephthalate) (PET) waste and acid mine drainage were used in the preparation of magnetic mesoporous carbon (MMC) nanocomposites for the adsorptive removal of pharmaceuticals and personal care products (PPCPs) from water samples. The latter were then characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), and ζ potential. The results of Brunauer-Emmett-Teller isotherms revealed high specific surface areas of 404, 664, and 936 m2/g with corresponding pore sizes 2.51, 2.28, and 2.26 nm for MMC, MMAC-25%, and MMAC-50% adsorbents, respectively. Under optimized conditions, the equilibrium studies were best described by the Langmuir and Freundlich models and kinetics by the pseudo-second-order model. The maximum adsorption capacity for monolayer adsorption from the Langmuir model was 112, 102, and 106 mg/g for acetaminophen, caffeine, and carbamazepine, respectively. The composites could be reused for up to six cycles without losing their adsorption efficiency. Furthermore, prepared adsorbents were used to remove acetaminophen, caffeine, and carbamazepine from wastewater samples, and up to a 95% removal efficiency was attained.
Collapse
Affiliation(s)
- Bongiwe
Apatia Mvala
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa
- Department
of Science and Innovation-National Research Foundation South African
Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
- Department
of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein 2028, South Africa
| | - Tshimangadzo S. Munonde
- Department
of Science and Innovation-National Research Foundation South African
Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
- Institute
for Nanotechnology and Water Sustainability, College of Science, Engineering
and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| | - Anele Mpupa
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa
- Department
of Science and Innovation-National Research Foundation South African
Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mokae Fanuel Bambo
- DSI/Mintek-
Nanotechnology Innovation Centre, Advanced Materials, Mintek, Randburg 2125, South Africa
| | - Kgabo Phillemon Matabola
- DSI/Mintek-
Nanotechnology Innovation Centre, Advanced Materials, Mintek, Randburg 2125, South Africa
- Department
of Water and Sanitation, University of Limpopo, Private Bag X 1106, Sovenga 0727, South Africa
| | - Philiswa Nosizo Nomngongo
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa
- Department
of Science and Innovation-National Research Foundation South African
Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
- Department
of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
3
|
Choudhary R, Aravamudan K, Renganathan T. Sequentially optimized process towards sustainable synthesis of activated carbon from wild thornbush for 4-nitrophenol and industrial effluent treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24986-25013. [PMID: 38460040 DOI: 10.1007/s11356-024-32749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Environmental nuisance thornbush Prosopis juliflora was utilized as an inexpensive and renewable biomass raw material for the sustainable production of activated carbon. Previously, the sequential muffle furnace-microwave arrangement was effective with acid activation for activated carbon synthesis. However, the intermediate synthesis steps were not optimized. In this work, we have optimized the intermediate steps, viz. chemical impregnation, carbonization, and microwave activation. Sequential optimization for base activation was developed and compared with acid activation. The base-activated carbon (BAC) exhibited a more crystalline nature and faster uptake kinetics than AAC. BAC demonstrated an adsorption capacity of 576 mg/g for 4-nitrophenol (4-NP) surpassing that of optimized acid-activated carbon (AAC) by 45%. The optimal base activation required 1.85 times lower microwave energy than that of the acid activation. BAC exhibited significantly higher BET surface area (1319 m2/g) and micropore volume (0.524 cm3/g) which were about 28% and 26% higher than those of AAC. When compared to biochar obtained from the same thornbush, the BAC exhibited an 11-fold increase in adsorption capacity. The adsorbents could be easily regenerated with ethanol and used up to five cycles. Adsorption using BAC also could achieve 80% COD removal for industrial wastewater, while AAC led to 61% removal. Continuous packed column with BAC revealed a breakthrough time of 3.5 h for industrial effluent while for 500 mg/L 4-nitrophenol, it was 25 h. Prosopis juliflora thornbush, an environmental nuisance, could be converted into a high-capacity adsorbent for environmental remediation after careful sequencing and optimization of the intermediate synthesis steps.
Collapse
Affiliation(s)
- Rajesh Choudhary
- CHL 205A, Chemical Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Kannan Aravamudan
- CHL 205A, Chemical Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Thiruvengadam Renganathan
- CHL 205A, Chemical Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
4
|
de Azevedo CF, Rodrigues DLC, Silveira LL, Lima EC, Osorio AG, Andreazza R, de Pereira CMP, Poletti T, Machado Machado F. Comprehensive adsorption and spectroscopic studies on the interaction of magnetic biochar from black wattle sawdust with beta-blocker metoprolol. BIORESOURCE TECHNOLOGY 2023; 388:129708. [PMID: 37625653 DOI: 10.1016/j.biortech.2023.129708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
The rise of contaminants of emerging concern in water-resources due to human activities has driven research toward wastewater treatment, specifically adsorption. The utilization of woody biomass for biochar production in adsorption has shown promise due to its high availability. This study shows the preparation of magnetic biochars (MB) from waste black wattle sawdust, utilizing ZnCl2 and NiCl2 (proportions: 1:0.5:0.5 = MB-0.5 and 1:1:1 = MB-1) as activating and magnetic agents. Synthesized via microwave-assisted-pyrolysis, MB boasts a high surface area (up to 765 m2.g-1) and functional groups, enhancing metoprolol medicine adsorption. Nonlinear kinetic and isothermal models were tested; the Avrami fractional-order kinetic model and Liu's isothermal model provided the best fits for experimental data. Thermodynamics and spectroscopic studies revealed spontaneous and exothermic adsorption processes, with physisorption magnitude and dominance of hydrogen-bond and π-π-interactions. MB can be easily extracted from an aqueous medium using magnetic fields, while adsorption capacity could be regenerated through green solvent elution.
Collapse
Affiliation(s)
- Cristiane Ferraz de Azevedo
- Technology Development Center, Federal University of Pelotas, 1 Gomes Carneiro St., 96010-610 Pelotas, RS, Brazil.
| | - Daniel Lucas Costa Rodrigues
- Technology Development Center, Federal University of Pelotas, 1 Gomes Carneiro St., 96010-610 Pelotas, RS, Brazil
| | - Leandro Lemos Silveira
- Technology Development Center, Federal University of Pelotas, 1 Gomes Carneiro St., 96010-610 Pelotas, RS, Brazil
| | - Eder Claudio Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Av., Postal Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Alice Goncalves Osorio
- Technology Development Center, Federal University of Pelotas, 1 Gomes Carneiro St., 96010-610 Pelotas, RS, Brazil
| | - Robson Andreazza
- Center of Engineering, Federal University of Pelotas, 989 Benjamin Constant St., 96010-020 Pelotas, RS, Brazil
| | - Claudio Martin Pereira de Pereira
- Hub Innovat B³, Center for Chemical, Pharmaceutical and Food Sciences, Bio-Forensic Research Group, Federal University of Pelotas, 96160-000, Pelotas, RS, Brazil
| | - Tais Poletti
- Technology Development Center, Federal University of Pelotas, 1 Gomes Carneiro St., 96010-610 Pelotas, RS, Brazil; Hub Innovat B³, Center for Chemical, Pharmaceutical and Food Sciences, Bio-Forensic Research Group, Federal University of Pelotas, 96160-000, Pelotas, RS, Brazil
| | - Fernando Machado Machado
- Technology Development Center, Federal University of Pelotas, 1 Gomes Carneiro St., 96010-610 Pelotas, RS, Brazil.
| |
Collapse
|
5
|
Mbafou CFG, Takam B, Boyom-Tatchemo FW, Tarkwa JB, Acayanka E, Kamgang GY, Gaigneaux EM, Laminsi S. Egg-derived porous plasma modified clay composite for wastewater remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6612-6626. [PMID: 36001266 DOI: 10.1007/s11356-022-22617-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Clays are often envisaged as an alternative to activated carbon for wastewater pollutant adsorption. However, conclusive results have only been obtained for clays heavily chemically modified. In this study, a greener approach is proposed to improve the retention capacity of clays. It consists in mixing clay (C) with eggshell (ES) and calcine, and then exposing to gliding arc plasma (ESC-800/PL). The resulting materials were characterized by nitrogen physisorption, FTIR, XRD, TGA/DTG, and point of zero charge analyses. The preparation gives porous platelet agglomerates resulting from the kaolinite-metakaolinite transition, thereby increasing their internal specific surface area and capacity to retain pollutants. This granular distribution is kept stable by partial pozzolanic reactions avoiding deagglomeration. The specific surface area and total pore volume increased respectively from 14 m2 g-1 and 0.049 cm3 g-1 to 89 m2 g-1 and 0.061 cm3 g-1 leading to an enhanced removal efficiency of Fast Green and Orange G dyes from polluted water. The maximum adsorption capacity occurred at 298 K attaining values of 32.34 and 14.78 mg g-1 for OG and FG, respectively. The pH plays a crucial role in the maximum sorption of dyes, and the experimental data were successfully adjusted to pseudo-first-order kinetic and Liu isotherm model.
Collapse
Affiliation(s)
- Claude F G Mbafou
- Inorganic Chemistry Department, University of Yaoundé I, P.O. Box 812, Yaounde, Cameroon
| | - Brice Takam
- Inorganic Chemistry Department, University of Yaoundé I, P.O. Box 812, Yaounde, Cameroon
| | - Franck W Boyom-Tatchemo
- Inorganic Chemistry Department, University of Yaoundé I, P.O. Box 812, Yaounde, Cameroon
- Institute of Condensed Matter and Nanosciences (IMCN), Division Molecular Chemistry, Materials and Catalysis (MOST), UCLouvain, Place Louis Pasteur 1, box L4.01.09, B-1348, Louvain-la-Neuve, Belgium
| | - Jean-Baptiste Tarkwa
- School of Geology and Mining Engineering, University of Ngaoundere, P.O. Box: 454, Meiganga, Cameroon
| | - Elie Acayanka
- Inorganic Chemistry Department, University of Yaoundé I, P.O. Box 812, Yaounde, Cameroon.
| | - Georges Y Kamgang
- Inorganic Chemistry Department, University of Yaoundé I, P.O. Box 812, Yaounde, Cameroon
| | - Eric M Gaigneaux
- Institute of Condensed Matter and Nanosciences (IMCN), Division Molecular Chemistry, Materials and Catalysis (MOST), UCLouvain, Place Louis Pasteur 1, box L4.01.09, B-1348, Louvain-la-Neuve, Belgium
| | - Samuel Laminsi
- Inorganic Chemistry Department, University of Yaoundé I, P.O. Box 812, Yaounde, Cameroon
| |
Collapse
|
6
|
Quesada HB, de Araújo TP, Cusioli LF, de Barros MASD, Gomes RG, Bergamasco R. CAFFEINE REMOVAL BY CHITOSAN/ACTIVATED CARBON COMPOSITE BEADS: ADSORPTION IN TAP WATER AND SYNTHETIC HOSPITAL WASTEWATER. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Removal of Emerging Contaminants as Diclofenac and Caffeine Using Activated Carbon Obtained from Argan Fruit Shells. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activated carbons from argan nutshells were prepared by chemical activation using phosphoric acid H3PO4. This material was characterized by thermogravimetric analysis, infrared spectrometry, and the Brunauer–Emmett–Teller method. The adsorption of two emerging compounds, a stimulant caffeine and an anti-inflammatory drug diclofenac, from distilled water through batch and dynamic tests was investigated. Batch mode experiments were conducted to assess the capacity of adsorption of caffeine and diclofenac from an aqueous solution using the carbon above. Adsorption tests showed that the equilibrium time is 60 and 90 min for diclofenac and caffeine, respectively. The adsorption of diclofenac and caffeine on activated carbon from argan nutshells is described by a pseudo-second-order kinetic model. The highest adsorption capacity determined by the mathematical model of Langmuir is about 126 mg/g for diclofenac and 210 mg/g for caffeine. The thermodynamic parameters attached to the studied absorbent/adsorbate system indicate that the adsorption process is spontaneous and exothermic for diclofenac and endothermic for caffeine.
Collapse
|
8
|
Khan TA, Nouman M, Dua D, Khan SA, Alharthi SS. Adsorptive scavenging of cationic dyes from aquatic phase by H3PO4 activated Indian jujube (Ziziphus mauritiana) seeds based activated carbon: Isotherm, kinetics, and thermodynamic study. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2021.101417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Yang X, Zhu W, Song Y, Zhuang H, Tang H. Removal of cationic dye BR46 by biochar prepared from Chrysanthemum morifolium Ramat straw: A study on adsorption equilibrium, kinetics and isotherm. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Quintero-Jaramillo JA, Carrero-Mantilla JI, Sanabria-González NR. A Review of Caffeine Adsorption Studies onto Various Types of Adsorbents. ScientificWorldJournal 2021; 2021:9998924. [PMID: 34335116 PMCID: PMC8315881 DOI: 10.1155/2021/9998924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 12/03/2022] Open
Abstract
A systematic literature review of publications from 2000 to 2020 was carried out to identify research trends on adsorbent materials for the removal of caffeine from aqueous solutions. Publications were retrieved from three databases (Scopus, Web of Science, and Google Scholar). Words "adsorption AND caffeine" were examined into titles, abstracts, and keywords. A brief bibliometric analysis was performed with emphasis on the type of publication and of most cited articles. Materials for the removal of caffeine were classified according to the type of material into three main groups: organic, inorganic, and composites, each of them subdivided into different subgroups consistent with their origin or production. Tables resume for each subgroup of adsorbents the key information: specific surface area, dose, pH, maximum adsorption capacity, and isotherm models for the removal of caffeine. The highest adsorption capacities were achieved by organic adsorbents, specifically those with granular activated carbon (1961.3 mg/g) and grape stalk activated carbon (916.7 mg/g). Phenyl-phosphate-based porous organic polymer (301 mg/g), natural sandy loam sediment (221.2 mg/g), composites of MCM-48 encapsulated graphene oxide (153.8 mg/g), and organically modified clay (143.7 mg/g) showed adsorption capacities lower than those of activated carbons. In some activated carbons, a relation between the specific surface area (SSA) and the maximum adsorption capacity (Q max) was found.
Collapse
Affiliation(s)
- Javier Andrés Quintero-Jaramillo
- Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, km 7 vía al Aeropuerto, AA 127, Manizales, Colombia
| | - Javier Ignacio Carrero-Mantilla
- Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, km 7 vía al Aeropuerto, AA 127, Manizales, Colombia
| | - Nancy Rocío Sanabria-González
- Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, km 7 vía al Aeropuerto, AA 127, Manizales, Colombia
| |
Collapse
|
11
|
Preparation and Application of Efficient Biobased Carbon Adsorbents Prepared from Spruce Bark Residues for Efficient Removal of Reactive Dyes and Colors from Synthetic Effluents. COATINGS 2021. [DOI: 10.3390/coatings11070772] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biobased carbon materials (BBC) obtained from Norway spruce (Picea abies Karst.) bark was produced by single-step chemical activation with ZnCl2 or KOH, and pyrolysis at 800 °C for one hour. The chemical activation reagent had a significant impact on the properties of the BBCs. KOH-biobased carbon material (KOH-BBC) had a higher specific surface area (SBET), equal to 1067 m2 g−1, larger pore volume (0.558 cm3 g−1), more mesopores, and a more hydrophilic surface than ZnCl2-BBC. However, the carbon yield for KOH-BBC was 63% lower than for ZnCl2-BBC. Batch adsorption experiments were performed to evaluate the ability of the two BBCs to remove two dyes, reactive orange 16 (RO-16) and reactive blue 4 (RB-4), and treat synthetic effluents. The general order model was most suitable for modeling the adsorption kinetics of both dyes and BBCs. The equilibrium parameters at 22 °C were calculated using the Liu model. Upon adsorption of RO-16, Qmax was 90.1 mg g−1 for ZnCl2-BBC and 354.8 mg g−1 for KOH-BBC. With RB-4, Qmax was 332.9 mg g−1 for ZnCl2-BBC and 582.5 mg g−1 for KOH-BBC. Based on characterization and experimental data, it was suggested that electrostatic interactions and hydrogen bonds between BBCs and RO-16 and RB-4 dyes played the most crucial role in the adsorption process. The biobased carbon materials showed high efficiency for removing RO-16 and RB-4, comparable to the best examples from the literature. Additionally, both the KOH- and ZnCl2-BBC showed a high ability to purify two synthetic effluents, but the KOH-BBC was superior.
Collapse
|
12
|
dos Reis GS, de Oliveira HP, Larsson SH, Thyrel M, Claudio Lima E. A Short Review on the Electrochemical Performance of Hierarchical and Nitrogen-Doped Activated Biocarbon-Based Electrodes for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:424. [PMID: 33562379 PMCID: PMC7914838 DOI: 10.3390/nano11020424] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 11/29/2022]
Abstract
Cheap and efficient carbon electrodes (CEs) for energy storage systems (ESS) such as supercapacitors (SCs) and batteries are an increasing priority issue, among other things, due to a globally increasing share of intermittent electricity production (solar and wind) and electrification of transport. The increasing consumption of portable and non-portable electronic devices justifies research that enables environmentally and economically sustainable production (materials, processing techniques, and product design) of products with a high electrochemical performance at an acceptable cost. Among all the currently explored CEs materials, biomass-based activated carbons (AC) present enormous potential due to their availability and low-cost, easy processing methods, physicochemical stability, and methods for self-doping. Nitrogen doping methods in CEs for SCs have been demonstrated to enhance its conductivities, surface wettability, and induced pseudocapacitance effect, thereby delivering improved energy/power densities with versatile properties. Herein, a short review is presented, focusing on the different types of natural carbon sources for preparing CEs towards the fabrication of SCs with high electrochemical performance. The influences of ACs' pore characteristics (micro and mesoporosity) and nitrogen doping on the overall electrochemical performance (EP) are addressed.
Collapse
Affiliation(s)
- Glaydson Simões dos Reis
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Biomass Technology Centre, SE-901 83 Umeå, Sweden; (S.H.L.); (M.T.)
| | | | - Sylvia H. Larsson
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Biomass Technology Centre, SE-901 83 Umeå, Sweden; (S.H.L.); (M.T.)
| | - Mikael Thyrel
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Biomass Technology Centre, SE-901 83 Umeå, Sweden; (S.H.L.); (M.T.)
| | - Eder Claudio Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre 91501-970, Brazil;
| |
Collapse
|
13
|
High-efficient decomplexation of Cu-EDTA and Cu removal by high-frequency non-thermal plasma oxidation/alkaline precipitation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117885] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Elham Ahangaran, Aghaie H, Fazaeli R. Study of Amoxicillin Adsorption on the Silanized Multiwalled Carbon Nanotubes: Isotherms, Kinetics, and Thermodynamics Study. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020; 94:2818-2828. [DOI: 10.1134/s0036024420130038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/01/2020] [Accepted: 02/11/2020] [Indexed: 01/02/2025]
|
15
|
Thue PS, Umpierres CS, Lima EC, Lima DR, Machado FM, Dos Reis GS, da Silva RS, Pavan FA, Tran HN. Single-step pyrolysis for producing magnetic activated carbon from tucumã (Astrocaryum aculeatum) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122903. [PMID: 32512448 DOI: 10.1016/j.jhazmat.2020.122903] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 05/07/2023]
Abstract
The present research describes the synthesis of new nanomagnetic activated carbon material with high magnetization, and high surface area prepared in a single pyrolysis step that is used for the carbonization, activation, and magnetization of the produced material. The pyrolysis step of tucumã seed was carried out in a conventional tubular oven at 600 °C under N2-flow. It was prepared three magnetic carbons MT-1.5, MT-2.0, MT-2.5, that corresponds to the proportion of biomass: ZnCl2 always 1:1 and varying the proportion of NiCl2 of 1.5, 2.0, and 2.5, respectively. These magnetic nanocomposites were characterized by Vibrating Sample Magnetometer (VSM), X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, hydrophobic/hydrophilic balance, CHN/O elemental analysis, modified Boehm titration, N2 adsorption-desorption isotherms; and pHpzc. All the materials obtained presented Ni particles with an average crystallite size of less than 33 nm. The MT-2.0 was employed for the removal of nicotinamide and propranolol from aqueous solutions. Based on Liu isotherm, the Qmax was 199.3 and 335.4 mg g-1 for nicotinamide and propranolol, respectively. MT-2.0 was used to treat simulated pharmaceutical industry effluents attaining removal of all organic compounds attaining up to 99.1 % of removal.
Collapse
Affiliation(s)
- Pascal S Thue
- Postgraduate Program in Science of Materials (PGCIMAT), Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil
| | - Cibele S Umpierres
- Postgraduate Program in Science of Materials (PGCIMAT), Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil
| | - Eder C Lima
- Postgraduate Program in Science of Materials (PGCIMAT), Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil; Postgraduate Program in Mine, Metallurgical, and Materials Engineering (PPGE3M), School of Engineering, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil; Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P.O. Box 15003, 91501-970, Porto Alegre, RS, Brazil.
| | - Diana R Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P.O. Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Fernando M Machado
- Technology Development Center, Federal University of Pelotas, Gomes Carneiro St., 96010-610, Pelotas, RS, Brazil
| | - Glaydson S Dos Reis
- Postgraduate Program in Mine, Metallurgical, and Materials Engineering (PPGE3M), School of Engineering, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil
| | - Raphaelle S da Silva
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P.O. Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Flavio A Pavan
- Federal University of Pampa (UNIPAMPA), Bagé, RS, Brazil
| | - Hai Nguyen Tran
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| |
Collapse
|
16
|
Rodrigues DLC, Machado FM, Osório AG, de Azevedo CF, Lima EC, da Silva RS, Lima DR, Gonçalves FM. Adsorption of amoxicillin onto high surface area-activated carbons based on olive biomass: kinetic and equilibrium studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41394-41404. [PMID: 32681342 DOI: 10.1007/s11356-020-09583-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
This study presents the extraction of antibiotic amoxicillin (AMX) from aqueous solution employing activated carbons (AC) from olive biomass (OB). Two AC were prepared using ZnCl2 (activator agent), and a conventional muffle furnace (ACF) or microwave oven (ACMW). The structure, morphology, and textural properties from both AC were analyzed by scanning electron microscope (SEM), pH of point-zero-charge (pHPZC), infrared spectroscopy (FTIR), and N2 adsorption/desorption isotherms. AC with mesoporous structures rich in oxygenated groups and high specific area (as high as 1742 m2 g-1) were helpful for the efficient and fast adsorption of AMX. The Avrami kinetic nonlinear equation showed the best fitting for the empirical data when related to the pseudo-1st and pseudo-2nd order. The isothermal experimental data followed the Liu nonlinear model, displaying at 25 °C the maximum sorption capacity of 237.02 and 166.96 mg g-1 for the ACF and ACMW, respectively. An adsorption test with synthetic hospital effluent was carried out to evaluate the possibility of applying both adsorbents in wastewater purification. The purification efficiency was up to 94.4% and 91.96% for ACF and ACMW, respectively. Therefore, the AC obtained from OB (containing a mixture of seed, pulp, and olive peel) has a high potential for application in removing emerging contaminants from the wastewater.
Collapse
Affiliation(s)
- Daniel Lucas Costa Rodrigues
- Technology Development Center, Federal University of Pelotas (UFPEL), 1 Gomes Carneiro St., Pelotas, RS, 96010-610, Brazil
| | - Fernando Machado Machado
- Technology Development Center, Federal University of Pelotas (UFPEL), 1 Gomes Carneiro St., Pelotas, RS, 96010-610, Brazil.
| | - Alice Gonçalves Osório
- Technology Development Center, Federal University of Pelotas (UFPEL), 1 Gomes Carneiro St., Pelotas, RS, 96010-610, Brazil
| | - Cristiane Ferraz de Azevedo
- Technology Development Center, Federal University of Pelotas (UFPEL), 1 Gomes Carneiro St., Pelotas, RS, 96010-610, Brazil
| | - Eder Claudio Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), 9500 Bento Gonçalves Av., P.O. Box 15003, Porto Alegre, RS, 91501-970, Brazil
| | - Raphaelle S da Silva
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), 9500 Bento Gonçalves Av., P.O. Box 15003, Porto Alegre, RS, 91501-970, Brazil
| | - Diana Ramos Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), 9500 Bento Gonçalves Av., P.O. Box 15003, Porto Alegre, RS, 91501-970, Brazil
| | - Fernanda Medeiros Gonçalves
- Livestock Research, Education and Extension Center, Federal University of Pelotas (UFPEL), 1529 Andrade Neves St., Pelotas, RS, 96020-080, Brazil
| |
Collapse
|
17
|
Niero G, Rodrigues CA, Almerindo GI, Corrêa AXR, Gaspareto P, Feuzer-Matos AJ, Somensi CA, Radetski CM. Using basic parameters to evaluate adsorption potential of alternative materials: example of amoxicillin adsorption by activated carbon produced from termite bio-waste. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 56:32-43. [PMID: 33090067 DOI: 10.1080/10934529.2020.1835125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
The minimum set of parameters that can be used to assess the adsorption capacity of activated carbon (AC) produced from termite bio-waste was determined. Three types of AC were prepared: AC600 at 600 °C, MAC600 at the same temperature and impregnated with FeCl3, and AC800 at 800 °C. The influence of the solution pH on the adsorption, adsorption kinetics, isotherms and thermodynamic parameters was considered to characterize the amoxicillin (AMX) adsorption process. The AC materials had surface areas (m2 g-1) of approximately 248.8 for AC600, 501.6 for AC800 and 269.5 for MAC600, with point of zero charge (pHPZC) values of 8.3, 7.5 and 1.7, respectively. A time period of 30 min was chosen for the adsorption kinetics, which was best represented by the pseudo-first-order model for AC600, the intraparticle diffusion model for AC800 and the pseudo-second-order model for MAC600. Regarding the isotherms, a maximum adsorption of 23.4 mg g-1 was found for AC800. In general, the thermodynamic parameters demonstrated a non-spontaneous process. It seems that the medium conditions, the adsorbate and adsorbent characteristics, and the Gibbs free energy are the most important parameters to be considered in a preliminary assessment of the adsorption efficiency of specific adsorbent/adsorbate pairs.
Collapse
Affiliation(s)
- Guilherme Niero
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, Brazil
| | - Clóvis A Rodrigues
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciências Farmacêuticas, Itajaí, Brazil
| | - Gizelle I Almerindo
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciências Farmacêuticas, Itajaí, Brazil
| | - Albertina X R Corrêa
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, Brazil
| | - Patrick Gaspareto
- Universidade Federal de Santa Catarina (UFSC), Hospital Universitário, Florianópolis, Brazil
| | - Ana J Feuzer-Matos
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, Brazil
| | - Cleder A Somensi
- Instituto Federal Catarinense (IFC), Curso de Mestrado Profissional em Tecnologia e Ambiente, Araquari, Brazil
| | - Claudemir M Radetski
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, Brazil
- Instituto Federal Catarinense (IFC), Curso de Mestrado Profissional em Tecnologia e Ambiente, Araquari, Brazil
| |
Collapse
|
18
|
dos Reis GS, Larsson SH, de Oliveira HP, Thyrel M, Claudio Lima E. Sustainable Biomass Activated Carbons as Electrodes for Battery and Supercapacitors-A Mini-Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1398. [PMID: 32708405 PMCID: PMC7407268 DOI: 10.3390/nano10071398] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 01/08/2023]
Abstract
Some recent developments in the preparation of biomass carbon electrodes (CEs) using various biomass residues for application in energy storage devices, such as batteries and supercapacitors, are presented in this work. The application of biomass residues as the primary precursor for the production of CEs has been increasing over the last years due to it being a renewable source with comparably low processing cost, providing prerequisites for a process that is economically and technically sustainable. Electrochemical energy storage technology is key to the sustainable development of autonomous and wearable electronic devices. This article highlights the application of various types of biomass in the production of CEs by using different types of pyrolysis and experimental conditions and denotes some possible effects on their final characteristics. An overview is provided on the use of different biomass types for the synthesis of CEs with efficient electrochemical properties for batteries and supercapacitors. This review showed that, from different biomass residues, it is possible to obtain CEs with different electrochemical properties and that they can be successfully applied in high-performance batteries and supercapacitors. As the research and development of producing CEs still faces a gap by linking the type and composition of biomass residues with the carbon electrodes' electrochemical performances in supercapacitor and battery applications, this work tries to diminish this gap. Physical and chemical characteristics of the CEs, such as porosity, chemical composition, and surface functionalities, are reflected in the electrochemical performances. It is expected that this review not only provides the reader with a good overview of using various biomass residues in the energy storage applications, but also highlights some goals and challenges remaining in the future research and development of this topic.
Collapse
Affiliation(s)
- Glaydson Simões dos Reis
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Biomass Technology Centre, SE-901 83 Umeå, Sweden; (S.H.L.); (M.T.)
| | - Sylvia H. Larsson
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Biomass Technology Centre, SE-901 83 Umeå, Sweden; (S.H.L.); (M.T.)
| | | | - Mikael Thyrel
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Biomass Technology Centre, SE-901 83 Umeå, Sweden; (S.H.L.); (M.T.)
| | - Eder Claudio Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre 91501-970, Brazil;
| |
Collapse
|
19
|
Cimirro NFGM, Lima EC, Cunha MR, Dias SLP, Thue PS, Mazzocato AC, Dotto GL, Gelesky MA, Pavan FA. Removal of pharmaceutical compounds from aqueous solution by novel activated carbon synthesized from lovegrass (Poaceae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21442-21454. [PMID: 32277415 DOI: 10.1007/s11356-020-08617-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
In this work, lovegrass (Cpa), an abundant grass of the Poaceae family, was employed as feedstock for the production of activated carbon in a conventional furnace using ZnCl2 as a chemical activator. The prepared material (Cpa-AC) was characterized by pH of the point of zero charges (pHpzc), Boehm's titration method, CHN/O elemental analysis, ATR-FTIR, N2 adsorption/desorption curves, and SEM. This carbon material was used for adsorption of acetylsalicylic acid (ASA) and sodium diclofenac (DFC). FTIR analysis identified the presence of O-H, N-H, O-C=O), C-O, and aromatic ring bulk and surface of (Cpa-AC) adsorbent. The quantification of the surface functional groups showed the presence of a large amount of acidic functional groups on the surface of the carbon material. The isotherms of adsorption and desorption of N2 confirm that the Cpa-AC adsorbent is mesopore material with a large surface area of 1040 m2 g-1. SEM results showed that the surface of Cpa-AC is rugous. The kinetic study indicates that the system followed the pseudo-second-order model (pH 4.0). The equilibrium time was achieved at 45 (ASA) and 60 min (DCF). The Liu isotherm model best fitted the experimental data. The maxima sorption capacities (Qmax) for ASA and DFC at 25 °C were 221.7 mg g-1 and 312.4 mg g-1, respectively. The primary mechanism of ASA and DFC adsorption was justified considering electrostatic interactions and π-π interactions between the Cpa-AC and the adsorbate from the solution.
Collapse
Affiliation(s)
- Nilton F G M Cimirro
- Postgraduate Program in Engineering, Federal University of Pampa (UNIPAMPA), Bagé, RS, 96412-420, Brazil
| | - Eder C Lima
- Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mariene R Cunha
- Postgraduate Program in Engineering, Federal University of Pampa (UNIPAMPA), Bagé, RS, 96412-420, Brazil
| | - Silvio L P Dias
- Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Pascal Silas Thue
- Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana C Mazzocato
- Brazilian Agricultural Research Corporation (EMBRAPA-CPPSul), Bagé, RS, Brazil
| | - Guilherme L Dotto
- Chemical Engineering Department, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Marcos A Gelesky
- School of Chemistry and Food, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Flávio André Pavan
- Postgraduate Program in Engineering, Federal University of Pampa (UNIPAMPA), Bagé, RS, 96412-420, Brazil.
| |
Collapse
|
20
|
Takam B, Tarkwa JB, Acayanka E, Nzali S, Chesseu DM, Kamgang GY, Laminsi S. Insight into the removal process mechanism of pharmaceutical compounds and dyes on plasma-modified biomass: the key role of adsorbate specificity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20500-20515. [PMID: 32246422 DOI: 10.1007/s11356-020-08536-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
The reason that some molecules, but not others, are easily adsorbed was not fully understood. In order to spotlight the effect of morphological structure and surface functional composition of adsorbate rather than focusing only on the nature of adsorbent as in most of literature reports, this work reports the biosorption of two dyes (anionic Orange G and cationic malachite green) and two pharmaceuticals (Ibuprofen and ampicillin) as target representative contaminants onto plasma-modified cocoa shell (CPHP) used as alternative low-cost adsorbent. As results, when molecules were mixed in solution and then exposed to a substrate, the factors that affect adsorption include the relative solvation of the adsorbates, the ability of each molecule to adhere to the surface, and the degree of interaction between the molecules once they were adsorbed. The maximum adsorbed amounts at 298 K of OG, MG, IBP, and AMP were 23.96, 14.65, 13.99, and 06.66 mg/g, respectively. The most solvated molecules may not adsorb rapidly to the surface, while comparatively, the less soluble molecules will aggregate, so as to maximize self-interactions via Van der Waals, hydrogen bonds or other interactions. This work demonstrated that the adsorbate intrinsic properties could play a significant role in the adsorption process. Hence, properties such as functional active groups, dimensions, and hydrophobicity were the determining parameters in the adsorption process mechanism. Accordingly, the pharmaceuticals biosorption mechanism involved π-π bonding, hydrophobic effect, electrostatic interaction, and van der Waals forces whereas the dye biosorption mechanism was dominated as well known by electrostatic attraction and hydrogen bonding phenomenon. Experimental parameters such as initial pH of solution and contact time were optimized. The optimum pH values were 2.0 for ibuprofen (IBP) and 7.0 for ampicillin (AMP). The kinetics of adsorption and the experimental isotherms data were analyzed using non-linear models. Results indicated that Avrami fractional order was the most successfully fitted model for pharmaceutical biosorption and based on the statistical values of SD and R2adj parameters, Liu isotherm was the most successfully fitted model.
Collapse
Affiliation(s)
- Brice Takam
- Département de Chimie Inorganique, Laboratoire de Chimie Physique et Analytique Appliquée, Université de Yaoundé I, P.O.Box: 812, Yaoundé, Cameroon
| | - Jean-Baptiste Tarkwa
- School of geology and mining engineering, University of Ngaoundere, P.O.Box: 454, Ngaoundere, Cameroon
| | - Elie Acayanka
- Département de Chimie Inorganique, Laboratoire de Chimie Physique et Analytique Appliquée, Université de Yaoundé I, P.O.Box: 812, Yaoundé, Cameroon.
| | - Serge Nzali
- School of Wood, Water and Natural Resources, Faculty of Agronomy and Agricultural Sciences, University of Dschang, Ebolowa campus, P.O. Box 786, Ebolowa, Cameroon
| | - Darryle M Chesseu
- Département de Chimie Inorganique, Laboratoire de Chimie Physique et Analytique Appliquée, Université de Yaoundé I, P.O.Box: 812, Yaoundé, Cameroon
| | - Georges Y Kamgang
- Département de Chimie Inorganique, Laboratoire de Chimie Physique et Analytique Appliquée, Université de Yaoundé I, P.O.Box: 812, Yaoundé, Cameroon
| | - Samuel Laminsi
- Département de Chimie Inorganique, Laboratoire de Chimie Physique et Analytique Appliquée, Université de Yaoundé I, P.O.Box: 812, Yaoundé, Cameroon
| |
Collapse
|
21
|
Mashile GP, Dimpe KM, Nomngongo PN. A Biodegradable Magnetic Nanocomposite as a Superabsorbent for the Simultaneous Removal of Selected Fluoroquinolones from Environmental Water Matrices: Isotherm, Kinetics, Thermodynamic Studies and Cost Analysis. Polymers (Basel) 2020; 12:polym12051102. [PMID: 32408684 PMCID: PMC7285333 DOI: 10.3390/polym12051102] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 02/05/2023] Open
Abstract
The application of a magnetic mesoporous carbon/β-cyclodextrin–chitosan (MMPC/Cyc-Chit) nanocomposite for the adsorptive removal of danofloxacin (DANO), enrofloxacin (ENRO) and levofloxacin (LEVO) from aqueous and environmental samples is reported in this study. The morphology and surface characteristics of the magnetic nanocomposite were investigated by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption–desorption and Fourier transform infrared spectroscopy (FTIR). The N2 adsorption–desorption results revealed that the prepared nanocomposite was mesoporous and the BET surface area was 1435 m2 g−1. The equilibrium data for adsorption isotherms were analyzed using two and three isotherm parameters. Based on the correlation coefficients (R2), the Langmuir and Sips isotherm described the data better than others. The maximum monolayer adsorption capacities of MMPC/Cyc-Chit nanocomposite for DANO, ENRO and LEVO were 130, 195 and 165 mg g−1, respectively. Adsorption thermodynamic studies performed proved that the adsorption process was endothermic and was dominated by chemisorption.
Collapse
Affiliation(s)
- Geaneth Pertunia Mashile
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa; (G.P.M.); (K.M.D.)
- DSI/NRF SARChI Chair: Nanotechnology for Water, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Kgokgobi Mogolodi Dimpe
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa; (G.P.M.); (K.M.D.)
- DSI/NRF SARChI Chair: Nanotechnology for Water, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa; (G.P.M.); (K.M.D.)
- DSI/NRF SARChI Chair: Nanotechnology for Water, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- Correspondence: ; Tel.: +27115596187
| |
Collapse
|
22
|
A mini-review of the morphological properties of biosorbents derived from plant leaves. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2335-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
23
|
Guleria A, Kumari G, Lima EC. Cellulose-g-poly-(acrylamide-co-acrylic acid) polymeric bioadsorbent for the removal of toxic inorganic pollutants from wastewaters. Carbohydr Polym 2020; 228:115396. [DOI: 10.1016/j.carbpol.2019.115396] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 11/16/2022]
|
24
|
Lima DR, Hosseini-Bandegharaei A, Thue PS, Lima EC, de Albuquerque YR, dos Reis GS, Umpierres CS, Dias SL, Tran HN. Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123966] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Lima DR, Lima EC, Umpierres CS, Thue PS, El-Chaghaby GA, da Silva RS, Pavan FA, Dias SLP, Biron C. Removal of amoxicillin from simulated hospital effluents by adsorption using activated carbons prepared from capsules of cashew of Para. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16396-16408. [PMID: 30982189 DOI: 10.1007/s11356-019-04994-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
High-surface-area activated carbons were prepared from an agroindustrial residue, Bertholletia excelsa capsules known as capsules of Para cashew (CCP), that were utilized for removing amoxicillin from aqueous effluents. The activated carbons were prepared with the proportion of CCP:ZnCl2 1:1, and this mixture was pyrolyzed at 600 (CCP-600) and 700 °C (CCP700). The CCP.600 and CCP.700 were characterized by CHN/O elemental analysis, the hydrophobic/hydrophilic ratio, FTIR, TGA, Boehm titration, total pore volume, and surface area. These analyses show that the adsorbents have different polar groups, which confers a hydrophilic surface. The adsorbents presented surface area and total pore volume of 1457 m2 g-1 and 0.275 cm3 g-1 (CCP.600) and 1419 m2 g-1 and 0.285 cm3 g-1 (CCP.700). The chemical and physical properties of the adsorbents were very close, indicating that the pyrolysis temperature of 600 and 700 °C does not bring relevant differences in the physical and chemical properties of these adsorbents. The adsorption data of kinetics and equilibrium were successfully adjusted to Avrami fractional-order and Liu isotherm model. The use of the adsorbents for treatment of simulated hospital effluents, containing different organic and inorganic compounds, showed excellent removals (up to 98.04% for CCP.600 and 98.60% CCP.700). Graphical abstract.
Collapse
Affiliation(s)
- Diana Ramos Lima
- Graduate program in Metallurgical, Mine and Materials Engineering (PPGE3M). School of Engineering, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, Porto Alegre, RS, 9500, Brazil
| | - Eder C Lima
- Graduate program in Metallurgical, Mine and Materials Engineering (PPGE3M). School of Engineering, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, Porto Alegre, RS, 9500, Brazil.
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P.O. Box 15003, Porto Alegre, RS, 91501-970, Brazil.
- Graduate program in Science of Materials (PGCIMAT). Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, Porto Alegre, RS, 9500, Brazil.
| | - Cibele S Umpierres
- Graduate program in Science of Materials (PGCIMAT). Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, Porto Alegre, RS, 9500, Brazil
| | - Pascal Silas Thue
- Graduate program in Science of Materials (PGCIMAT). Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, Porto Alegre, RS, 9500, Brazil
| | | | - Raphaelle Sanches da Silva
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P.O. Box 15003, Porto Alegre, RS, 91501-970, Brazil
| | - Flavio A Pavan
- Federal University of Pampa (UNIPAMPA), Bagé, RS, Brazil
| | - Silvio L P Dias
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P.O. Box 15003, Porto Alegre, RS, 91501-970, Brazil
- Graduate program in Science of Materials (PGCIMAT). Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, Porto Alegre, RS, 9500, Brazil
| | - Camille Biron
- Graduate program in Metallurgical, Mine and Materials Engineering (PPGE3M). School of Engineering, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, Porto Alegre, RS, 9500, Brazil
| |
Collapse
|
26
|
Tomul F, Arslan Y, Başoğlu FT, Babuçcuoğlu Y, Tran HN. Efficient removal of anti-inflammatory from solution by Fe-containing activated carbon: Adsorption kinetics, isotherms, and thermodynamics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 238:296-306. [PMID: 30852406 DOI: 10.1016/j.jenvman.2019.02.088] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 05/22/2023]
Abstract
This work developed an innovative activated carbon (ICAC) derived from orange peels (OP) through chemical activation using FeCl3. The traditional activated carbon (PCAC) that was prepared through K2CO3 activation served as a comparison. Three adsorbents (ICAC, PCAC, and OP) were characterized by various techniques, these being: Brunauer-Emmett-Teller (BET) surface area analysis, thermo-gravimetric analysis, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. They were applied to remove diclofenac from aqueous solution applying batch experiments, in order to investigate the characteristics of adsorptive kinetics, isotherms, and thermodynamics. Results indicated that the SBET values were in the following order: 457 m2/g (PCAC) > 184 m2/g (ICAC) > 3.56 m2/g (OP). The adsorption process reached a fast equilibrium, with activating energies being 27.6 kJ/mol (ICAC), 16.0 kJ/mol (OP), and 11.2 kJ/mol (PCAC). The Langmuir adsorption capacities at 30 °C exhibited the decreasing order: 144 mg/g (ICAC) > 6.44 mg/g (OP) > 5.61 mg/g (PCAC). The thermodynamic parameters demonstrated a signal dissimilarity between biosorbent (ΔG° <0, ΔH° <0, and ΔS° <0) and activated carbon samples (ΔG° <0, ΔH° >0, and ΔS° >0). The presence of iron (FeOCl, γ-Fe2O3, and FeOOH) on the surface of ICAC played a determining role in efficiently removing diclofenac from solution. The excellent adsorption capacity of ICAC toward diclofenac resulted presumably from the contribution of complicated adsorption mechanisms, such as hydrogen bonding, ion-dipole interaction, π-π interaction, pore filling, and possible Fenton-like degradation. Therefore, FeCl3 can serve as a promising activating agent for AC preparation with excellent efficiency in removing diclofenac.
Collapse
Affiliation(s)
- Fatma Tomul
- Burdur Mehmet Akif Ersoy University, Faculty of Arts and Science, Chemistry Department, 15100 Burdur, Turkey
| | - Yasin Arslan
- Mehmet Akif Ersoy University, Faculty of Arts and Science, Nanoscience and Nanotechnology Department, 15100 Burdur, Turkey
| | - Funda Turgut Başoğlu
- Gazi University, Faculty of Engineering, Chemical Engineering Department, 06500 Ankara, Turkey
| | - Yurdaer Babuçcuoğlu
- General Directorate of Mineral Research and Exploration, Analysis Laboratories Division, Geochemistry Subdivision, 06800 Ankara, Turkey
| | - Hai Nguyen Tran
- Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
27
|
de Oliveira Carvalho C, Costa Rodrigues DL, Lima ÉC, Santanna Umpierres C, Caicedo Chaguezac DF, Machado Machado F. Kinetic, equilibrium, and thermodynamic studies on the adsorption of ciprofloxacin by activated carbon produced from Jerivá (Syagrus romanzoffiana). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4690-4702. [PMID: 30565105 DOI: 10.1007/s11356-018-3954-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/07/2018] [Indexed: 05/23/2023]
Abstract
High specific surface area activated carbon prepared from endocarp of Jerivá (Syagrus romanzoffiana) (ACJ) was used for ciprofloxacin (CIP) antibiotic removal from aqueous effluents. The activated carbon (AC) was characterized via scanning electron microscope, Fourier transform infrared spectroscopy, N2 adsorption/desorption, and pH value at the zero-charge point. Avrami kinetic model was the one that best fit the experimental results in comparison to the pseudo-first-order and pseudo-second-order kinetic models. The equilibrium data obeyed the Liu isotherm equation, showing a maximum adsorption capacity of 335.8 mg g-1 at 40 °C. The calculated thermodynamic parameters indicate that the adsorption of CIP was spontaneous and endothermic at all studied temperatures. Also, the free enthalpy changes (∆H° = 3.34 kJ mol-1) suggested physical adsorption between CIP and ACJ. Simulated effluents were utilized to check the potential of the ACJ for wastewater purification. The highly efficient features enable the activated carbon prepared from endocarp of Jerivá, an attractive carbon adsorbent, to remove ciprofloxacin from wastewaters.
Collapse
Affiliation(s)
| | - Daniel Lucas Costa Rodrigues
- Technology Development Center, Federal University of Pelotas, 1 Gomes Carneiro St, Pelotas, RS, 96010-610, Brazil
| | - Éder Cláudio Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Ave., Postal Box 15003, Porto Alegre, RS, 91501-970, Brazil
| | - Cibele Santanna Umpierres
- Institute of Chemistry, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Ave., Postal Box 15003, Porto Alegre, RS, 91501-970, Brazil
| | - Diana Fernanda Caicedo Chaguezac
- Institute of Chemistry, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Ave., Postal Box 15003, Porto Alegre, RS, 91501-970, Brazil
| | - Fernando Machado Machado
- Technology Development Center, Federal University of Pelotas, 1 Gomes Carneiro St, Pelotas, RS, 96010-610, Brazil.
| |
Collapse
|
28
|
A Review on the Synthesis and Characterization of Biomass-Derived Carbons for Adsorption of Emerging Contaminants from Water. C — JOURNAL OF CARBON RESEARCH 2018. [DOI: 10.3390/c4040063] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review analyzes the preparation and characterization of biomass-derived carbons and their application as adsorbents of emerging contaminants from water. The study begins by identifying the different types of emerging contaminants more often found in water streams, including a brief reference to the available technologies for their removal. It also describes the biomass sources that could be used for the synthesis of biochars and activated carbons (AC). The characterization of the adsorbents and the different approaches that can be followed to learn about the adsorption processes are also detailed. Finally, the work reviews literature studies focused on the adsorption of emerging contaminants on biochars and activated carbons synthesized from biomass precursors.
Collapse
|
29
|
Khasri A, Ahmad MA. Adsorption of basic and reactive dyes from aqueous solution onto Intsia bijuga sawdust-based activated carbon: batch and column study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31508-31519. [PMID: 30203351 DOI: 10.1007/s11356-018-3046-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
The adsorption behavior of basic, methylene blue (MB), and reactive, remazol brilliant violet 5R (RBV), dyes from aqueous solution onto Intsia bijuga sawdust-based activated carbon (IBSAC) was executed via batch and column studies. The produced activated carbon was characterized through Brunauer-Emmett-Teller (BET) surface area and pore structural analysis, proximate and ultimate, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). Batch studies were performed to investigate the effects of contact time, initial concentration, and solution pH. The equilibrium data for both MB and RBV adsorption better fits Langmuir model with maximum adsorption capacity of 434.78 and 212.77 mg/g, respectively. Kinetic studies for both MB and RBV dyes showed that the adsorption process followed a pseudo-second-order and intraparticle diffusion kinetic models. For column mode, the breakthrough curves were plotted by varying the flow rate, bed height, and initial concentration and the breakthrough data were best correlated with the Yoon-Nelson model compared to Thomas and Adams-Bohart model. The adsorption activity of IBSAC shows good stability even after four consecutive cycles.
Collapse
Affiliation(s)
- Azduwin Khasri
- Department of Chemical Engineering Technology, Faculty of Engineering Technology, Kampus Unicity Sungai Chuchuh, Universiti Malaysia Perlis, 02100, Padang Besar, Perlis, Malaysia
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Mohd Azmier Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| |
Collapse
|