1
|
Dar MS, Rosaiah P, Bhagyalakshmi J, Ahirwar S, Khan A, Tamizhselvi R, Reddy VRM, Palaniappan A, Sahu NK. Graphene quantum dots as nanotherapeutic agents for triple-negative breast cancer: Insights from 3D tumor models. Coord Chem Rev 2025; 523:216247. [DOI: 10.1016/j.ccr.2024.216247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
da Silva MP, de Souza ACA, Ferreira ÁRD, do Nascimento PLA, Fraga TJM, Cavalcanti JVFL, Ghislandi MG, da Motta Sobrinho MA. Synthesis of superparamagnetic Fe 3O 4-graphene oxide-based material for the photodegradation of clonazepam. Sci Rep 2024; 14:18916. [PMID: 39143177 PMCID: PMC11324737 DOI: 10.1038/s41598-024-67352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/10/2024] [Indexed: 08/16/2024] Open
Abstract
The global concern over water pollution caused by contaminants of emerging concern has been the subject of several studies due to the complexity of treatment. Here, the synthesis of a graphene oxide-based magnetic material (GO@Fe3O4) produced according to a modified Hummers' method followed by a hydrothermal reaction was proposed; then, its application as a photocatalyst in clonazepam photo-Fenton degradation was investigated. Several characterization analyses were performed to analyze the structure, functionalization and magnetic properties of the composite. A 23 factorial design was used for the optimization procedure to investigate the effect of [H2O2], GO@Fe3O4 dose and pH on clonazepam degradation. Adsorption experiments demonstrated that GO@Fe3O4 could not adsorb clonazepam. Photo-Fenton kinetics showed that total degradation of clonazepam was achieved within 5 min, and the experimental data were better fitted to the PFO model. A comparative study of clonazepam degradation by different processes highlighted that the heterogeneous photo-Fenton process was more efficient than homogeneous processes. The radical scavenging test showed that O 2 · - was the main active free radical in the degradation reaction, followed by hydroxyl radicals (•OH) and holes (h+) in the valence layer; accordingly, a mechanism of degradation was proposed to describe the process.
Collapse
Affiliation(s)
- Maryne Patrícia da Silva
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil.
| | - Ana Caroline Alves de Souza
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Ágata Rodrigues Deodato Ferreira
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Pedro Lucas Araújo do Nascimento
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Tiago José Marques Fraga
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
- Department of Food Science, Federal University of Pernambuco Agreste (UFAPE), Bom Pastor Avenue, W/N, Boa Vista, Garanhuns, PE, 55292-270, Brazil
| | | | - Marcos Gomes Ghislandi
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
- Federal Rural University of Pernambuco (UFRPE), 300 Cento e Sessenta e Três Av., Cabo de Santo Agostinho, PE, Brazil
| | - Maurício Alves da Motta Sobrinho
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
| |
Collapse
|
3
|
Şimşek İ, Bahadir T, Çelebi H, Tulun Ş. Selective adsorption of single and binary dyestuffs by citrus peel: Characterization, and adsorption performance. CHEMOSPHERE 2024; 352:141475. [PMID: 38367873 DOI: 10.1016/j.chemosphere.2024.141475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
The powdered citrus peel, which has been replaced with sodium hydroxide, was used in this study to test how well methylene blue and reactive black 5 dyestuff absorbed one or both. To find out about the texture and surface chemistry of modified citrus peel, Fourier transform infrared spectroscopy and scanning electron microscope analyses were carried out. Fourier transform infrared spectroscopy data revealed the presence of amphoteric radicals on the modified citrus peel surface, indicating the effective adsorption of methylene blue and reactive black 5. Many parameters affecting the batch adsorption process, such as modified citrus peel dose (0.1-0.5 g), pH (2-10), time (20-80 min), stirring speed (60-180 rpm), and temperature (20-45 °C), were studied. It is seen that the physical effect is at the forefront, homogeneous monolayer adsorption occurs, and the process fits the Langmuir and pseudo first order models for dyestuffs. Thermodynamic modeling showed that the adsorption of methylene blue and reactive black 5 was spontaneous and endothermic. At pH 2, an adsorption capacity of 0.67 mg/g and a removal efficiency of 66.86% were achieved for reactive black 5. For methylene blue at pH 6, the adsorption capacity was 4.34 mg/g, and the decolorization rate was 87%. The decreases in the removal rates of dyestuffs in the binary system indicate that they are affected by their simultaneous presence in the solution. The results proved that modified citrus peel can be useful for dyestuff removal in single or binary systems, although the removal capacity of modified citrus peel is highly dependent on methylene blue and reactive black 5.
Collapse
Affiliation(s)
- İsmail Şimşek
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100, Aksaray, Turkey
| | - Tolga Bahadir
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100, Aksaray, Turkey
| | - Hakan Çelebi
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100, Aksaray, Turkey.
| | - Şevket Tulun
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100, Aksaray, Turkey
| |
Collapse
|
4
|
Superparamagnetic Multifunctionalized Chitosan Nanohybrids for Efficient Copper Adsorption: Comparative Performance, Stability, and Mechanism Insights. Polymers (Basel) 2023; 15:polym15051157. [PMID: 36904398 PMCID: PMC10007229 DOI: 10.3390/polym15051157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/11/2023] [Accepted: 02/18/2023] [Indexed: 03/02/2023] Open
Abstract
To limit the dangers posed by Cu(II) pollution, chitosan-nanohybrid derivatives were developed for selective and rapid copper adsorption. A magnetic chitosan nanohybrid (r-MCS) was obtained via the co-precipitation nucleation of ferroferric oxide (Fe3O4) co-stabilized within chitosan, followed by further multifunctionalization with amine (diethylenetriamine) and amino acid moieties (alanine, cysteine, and serine types) to give the TA-type, A-type, C-type, and S-type, respectively. The physiochemical characteristics of the as-prepared adsorbents were thoroughly elucidated. The superparamagnetic Fe3O4 nanoparticles were mono-dispersed spherical shapes with typical sizes (~8.5-14.7 nm). The adsorption properties toward Cu(II) were compared, and the interaction behaviors were explained with XPS and FTIR analysis. The saturation adsorption capacities (in mmol.Cu.g-1) have the following order: TA-type (3.29) > C-type (1.92) > S-type (1.75) > A-type(1.70) > r-MCS (0.99) at optimal pH0 5.0. The adsorption was endothermic with fast kinetics (except TA-type was exothermic). Langmuir and pseudo-second-order equations fit well with the experimental data. The nanohybrids exhibit selective adsorption for Cu(II) from multicomponent solutions. These adsorbents show high durability over multiple cycles with desorption efficiency > 93% over six cycles using acidified thiourea. Ultimately, QSAR tools (quantitative structure-activity relationships) were employed to examine the relationship between essential metal properties and adsorbent sensitivities. Moreover, the adsorption process was described quantitatively, using a novel three-dimensional (3D) nonlinear mathematical model.
Collapse
|
5
|
Bezerra de Araujo CM, Wernke G, Ghislandi MG, Diório A, Vieira MF, Bergamasco R, Alves da Motta Sobrinho M, Rodrigues AE. Continuous removal of pharmaceutical drug chloroquine and Safranin-O dye from water using agar-graphene oxide hydrogel: Selective adsorption in batch and fixed-bed experiments. ENVIRONMENTAL RESEARCH 2023; 216:114425. [PMID: 36181896 DOI: 10.1016/j.envres.2022.114425] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
In this work, Chloroquine diphosphate, and the cationic dye Safranin-O were selectively removed from water using the agar-graphene oxide (A-GO) hydrogel, produced via simple one-step jellification process. The morphology of the A-GO biocomposite was characterized and batch experiments were performed, with adsorption isotherms satisfactorily fitting (R2 > 0.98) Sips (Safranin-O) and Freundlich (Chloroquine) isotherms. Driving force models and Fick's diffusion equation were applied to the modeling of kinetic data, and a satisfactory fit was obtained. Selective adsorption carried out in batch indicated that competitive adsorption occurs when both components are mixed in water solution - the adsorptive capacities dropped ∼10 mg g-1 for each component, remaining 41 mg g-1 for safranin-O and 31 mg g-1 for chloroquine. Fixed-bed breakthrough curves obtained in an adsorption column showed adsorption capacities over 63 mg g-1 and 100 mg g-1 for chloroquine and safranin-O, respectively, also exhibiting outstanding regenerative potentials. Overall, the biocomposite produced using graphene oxide proved to be a viable and eco-friendly alternative to continuously remove both contaminants from water.
Collapse
Affiliation(s)
- Caroline Maria Bezerra de Araujo
- Department of Chemical Engineering - Federal University of Pernambuco (UFPE), Prof. Arthur de Sá St., s/n, Cidade Universitária. 50740-521, Recife, PE, Brazil.
| | - Gessica Wernke
- Department of Chemical Engineering - State University of Maringá (UEM), Colombo Av., 5790, Building D-90, 87020-900, Maringá, PR, Brazil
| | - Marcos Gomes Ghislandi
- Engineering Campus (UACSA) - Federal Rural University of Pernambuco (UFRPE), R. Cento e sessenta e Três, 300, 54518-430, Cabo de Santo Agostinho, PE, Brazil
| | - Alexandre Diório
- Department of Chemical Engineering - State University of Maringá (UEM), Colombo Av., 5790, Building D-90, 87020-900, Maringá, PR, Brazil
| | - Marcelo Fernandes Vieira
- Department of Chemical Engineering - State University of Maringá (UEM), Colombo Av., 5790, Building D-90, 87020-900, Maringá, PR, Brazil
| | - Rosângela Bergamasco
- Department of Chemical Engineering - State University of Maringá (UEM), Colombo Av., 5790, Building D-90, 87020-900, Maringá, PR, Brazil
| | - Maurício Alves da Motta Sobrinho
- Department of Chemical Engineering - Federal University of Pernambuco (UFPE), Prof. Arthur de Sá St., s/n, Cidade Universitária. 50740-521, Recife, PE, Brazil
| | - Alírio Egídio Rodrigues
- LSRE-LCM, Department of Chemical Engineering - Faculty of Engineering of the University of Porto (FEUP), R. Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| |
Collapse
|
6
|
de Araujo CMB, Ghislandi MG, Rios AG, da Costa GRB, do Nascimento BF, Ferreira AFP, da Motta Sobrinho MA, Rodrigues AE. Wastewater treatment using recyclable agar-graphene oxide biocomposite hydrogel in batch and fixed-bed adsorption column: Bench experiments and modeling for the selective removal of organics. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Gomes BFML, de Araújo CMB, do Nascimento BF, Freire EMPDL, Da Motta Sobrinho MA, Carvalho MN. Synthesis and application of graphene oxide as a nanoadsorbent to remove Cd (II) and Pb (II) from water: adsorption equilibrium, kinetics, and regeneration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17358-17372. [PMID: 34664163 DOI: 10.1007/s11356-021-16943-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
In this work, graphene oxide (GO) was synthesized by the modified Hummers method. The nanomaterial was characterized by FTIR and Raman spectroscopy, SEM, and pH at the point of zero charge. GO exhibited typical characteristics of graphene-based materials, indicating that graphite oxidation and exfoliation occurred successfully. Cd (II) and Pb (II) adsorption onto GO was carried out in batch systems, in which the effect of adsorbent dosage, contact time, and initial adsorbate concentration were evaluated. Langmuir, Freundlich, and Sips isotherm models, as well as pseudo order models and Elovich kinetic equation were applied to adsorption experimental data. Results indicated that increasing adsorbent mass, the removal efficiency of Cd (II) and Pb (II) increased. Freundlich isotherm better described Pb (II) adsorption (R2 = 0.96), while Cd (II) isotherm showed linear behavior. From the Akaike's AIC parameter, kinetic data were satisfactorily described by pseudo-first order (Cd (II)) and pseudo-n order (Pb (II)) models. GO was successfully subjected to five regeneration cycles, maintaining high efficiency (> 90%) in all cycles. GO showed high potential for the adsorption of Cd (II) and Pb (II) from aqueous solution, due to its high adsorption capacity, rapid Cd (II) and Pb (II) intakes, and great regeneration performance.
Collapse
Affiliation(s)
- Brener Felipe Melo Lima Gomes
- Department of Rural Technology, Universidade Federal Rural de Pernambuco, R. Dom Manuel de Medeiros, Recife, PE, 52171-900, Brazil.
| | - Caroline Maria Bezerra de Araújo
- Department of Chemical Engineering, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Recife, PE, 50670-910, Brazil
| | - Bruna Figueiredo do Nascimento
- Department of Chemical Engineering, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Recife, PE, 50670-910, Brazil
| | | | - Mauricio Alves Da Motta Sobrinho
- Department of Chemical Engineering, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Recife, PE, 50670-910, Brazil
| | - Marilda Nascimento Carvalho
- Department of Chemical Engineering, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Recife, PE, 50670-910, Brazil
| |
Collapse
|
8
|
Adsorption of methylene blue on magnetite humic acid: Kinetic, isotherm, thermodynamic, and regeneration studies. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
9
|
Mathematical Tool Based on Breakthrough Curves to Evaluate the Economic Advantages of Chemical Regeneration of Activated Carbon in Power Plants: A Comparative Study. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A mathematical tool has been developed to evaluate the economic advantages of in-situ chemical regeneration of fixed-bed industrial adsorbers of granular activated carbon for cooling water treatment systems in Cuban power plants. Two scenarios of activated carbon (AC) management in a power plant were compared by applying the proposed model. The economic profit by implementing the regeneration strategy as a function of the number of regeneration cycles was determined and optimized. Breakthrough curves were obtained to assess the adsorption performance of the AC after progressive saturation–chemical regeneration cycles using synthetic water and hydrochloric acid, respectively. For the first saturation cycle, the breakthrough time was 272 min and after 10 cycles, it was reduced to 58 min, indicating a decrease of the adsorption capacity of 21%. The AC adsorption performance in terms of saturation time as a function of the number of regeneration cycles was considered one of the tool parameters. The proposed tool allows to determine the optimal number of regeneration cycles for a maximum economic profit in the regeneration strategy. It was demonstrated, using the proposed tool, that after an optimum of seven regeneration cycles, the power plant expends only 26% of the total investment. The simplicity of the tool permits a rapid way to find the most profitable number of regeneration cycles by combining economic, technical and adsorption efficiency parameters in one function, thus improving the AC management strategy at an industrial scale with corresponding environmental and economic advantages, including sustainability.
Collapse
|
10
|
Souza ZSB, Pinto GM, Silva GDC, Demarquette NR, Fechine GJM, Sobrinho MAM. Interface adjustment between poly(ethylene terephthalate) and graphene oxide in order to enhance mechanical and thermal properties of nanocomposites. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ziani S. B. Souza
- Department of Chemical Engineering Federal University of Pernambuco Recife Brazil
| | - Gabriel M. Pinto
- Mackenzie Institute for Research in Graphene and Nanotechnologies – MackGraphe, Mackenzie Presbyterian University São Paulo Brazil
| | - Giovanna da C. Silva
- Mackenzie Institute for Research in Graphene and Nanotechnologies – MackGraphe, Mackenzie Presbyterian University São Paulo Brazil
| | - Nicole R. Demarquette
- Department of Mechanical Engineering Ecole de Technologie Supérieure Montréal Canada
| | - Guilhermino J. M. Fechine
- Mackenzie Institute for Research in Graphene and Nanotechnologies – MackGraphe, Mackenzie Presbyterian University São Paulo Brazil
| | | |
Collapse
|
11
|
da Silva MP, de Souza ZSB, Cavalcanti JVFL, Fraga TJM, da Motta Sobrinho MA, Ghislandi MG. Adsorptive and photocatalytic activity of Fe 3O 4-functionalized multilayer graphene oxide in the treatment of industrial textile wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23684-23698. [PMID: 32996089 DOI: 10.1007/s11356-020-10926-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Multilayer graphene oxide (mGO) was synthesized and functionalized via co-precipitation method to produce magnetic Fe3O4-functionalized multilayer graphene oxide nanocomposite (MmGO). Photocatalytic properties of MmGO were investigated in the photodegradation of raw textile wastewater samples. Fourier-transformed infrared spectroscopy revealed Fe-O vibrations, characterized by the band shift from 636.27 to 587.25 cm-1 on MmGO. X-ray diffraction confirmed the successful oxidation of graphite by the (002) peak at 10° and indicated the presence of Fe3O4 on MmGO surface by the peaks at 2θ 35.8° (311), 42.71° (400), 54.09° (511), and 62.8° (440). There was no detection of coercivity field and remnant magnetization, evidencing a material with superparamagnetic properties. Then, the textile effluent was treated by heterogeneous photo-Fenton (HPF) reaction. A 22 factorial design was conducted to evaluate the effects of MmGO dosage and H2O2 concentration on HPF, with color and turbidity removal as response variables. The kinetic behavior of the adsorption and HPF processes was investigated separately, in which, the equilibrium was reached within 60 and 120 min, for adsorption and HPF, respectively. Pseudo-second-order model exhibited the best fit, with COD uptake capacity at equilibrium of 4094.94 mg g-1, for chemical oxygen demand. The modeling of kinetics data showed that the Chan and Chu model was the most representative for HPF, with initial removal rate of 95.52 min-1. The removal of organic matter was 76.36% greater than that reached by conventional treatment at textile mills. The presence of Fe3O4 nanoparticles attached to MmGO surface was responsible for the increase of electron mobility and the enhancement of its photocatalytic properties. Finally, MmGO presented low phytotoxic to Cucumis sativus L. with a RGI of 0.53. These results bring satisfactory perspectives regarding further employment, on large scale, of MmGO as nanocatalyst of textile pollutants.
Collapse
Affiliation(s)
- Maryne Patrícia da Silva
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av., Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Ziani Santana Bandeira de Souza
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av., Cidade Universitária, Recife, PE, 50670-901, Brazil
| | | | - Tiago José Marques Fraga
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av., Cidade Universitária, Recife, PE, 50670-901, Brazil.
| | - Maurício Alves da Motta Sobrinho
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av., Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Marcos Gomes Ghislandi
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av., Cidade Universitária, Recife, PE, 50670-901, Brazil
- Engineering Campus-UACSA, Federal Rural University of Pernambuco (UFRPE), 300 Cento e Sessenta e Três Av, Cabo de Santo Agostinho, PE, 54518-430, Brazil
| |
Collapse
|
12
|
de Souza ZSB, Silva MP, Fraga TJM, Motta Sobrinho MA. A comparative study of photo-Fenton process assisted by natural sunlight, UV-A, or visible LED light irradiation for degradation of real textile wastewater: factorial designs, kinetics, cost assessment, and phytotoxicity studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23912-23928. [PMID: 33394423 DOI: 10.1007/s11356-020-12106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
The present work aims to evaluate the treatment of the effluent from the textile industry via advanced oxidative processes of photo-Fenton assisted by different sources (natural sunlight, UV-A or visible LED lamps). To identify the best operating conditions, a factorial design was carried out for each process. It was observed that after the optimization of the processes, chemical oxygen demand (COD) removals greater than 88% were achieved. In addition, it was observed that the use of the LED lamp required lower reagent concentrations compared to solar and UV-A sources. A kinetic study was carried out under the best conditions obtained and it was observed that the sources showed rapid evolution, reaching a COD removal equilibrium with 30 min of reaction. Reagent monitoring was also carried out, and it was observed that they were not limiting to the reaction. Phytotoxicity analysis was also satisfactory since the treated effluents allowed a higher relative growth and germination index of the cucumber roots compared to the raw effluent. Finally, the cost analysis indicated that the use of LED lamps resulted in a reduction in electrical consumption compared to the UV-A lamp, as well as a reduction in the cost of reagents due to the lower concentration of reagents required compared to processes assisted by natural sunlight and UV-A.
Collapse
Affiliation(s)
- Ziani S B de Souza
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Avenue, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil.
| | - Maryne P Silva
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Avenue, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil
| | - Tiago J M Fraga
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Avenue, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil
| | - Maurício A Motta Sobrinho
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Avenue, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil
| |
Collapse
|
13
|
Salih KAM, Hamza MF, Mira H, Wei Y, Gao F, Atta AM, Fujita T, Guibal E. Nd(III) and Gd(III) Sorption on Mesoporous Amine-Functionalized Polymer/SiO 2 Composite. Molecules 2021; 26:1049. [PMID: 33671351 PMCID: PMC7922550 DOI: 10.3390/molecules26041049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022] Open
Abstract
The strong demand for rare-earth elements (REEs) is driven by their wide use in high-tech devices. New processes have to be developed for valorizing low-grade ores or alternative metal sources (such as wastes and spent materials). The present work contributed to the development of new sorbents for the recovery of rare earth ions from aqueous solutions. Functionalized mesoporous silica composite was synthesized by grafting diethylenetriamine onto composite support. The physical and chemical properties of the new sorbent are characterized using BET, TGA, elemental analysis, titration, FTIR, and XPS spectroscopies to identify the reactive groups (amine groups: 3.25 mmol N g-1 and 3.41 by EA and titration, respectively) and their mode of interaction with Nd(III) and Gd(III). The sorption capacity at the optimum pH (i.e., 4) reaches 0.9 mmol Nd g-1 and 1 mmol Gd g-1. Uptake kinetics are modeled by the pseudo-first-order rate equation (equilibrium time: 30-40 min). At pH close to 4-5, the sorbent shows high selectivity for rare-earth elements against alkali-earth elements. This selectivity is confirmed by the efficient recovery of REEs from acidic leachates of gibbsite ore. After elution (using 0.5 M HCl solutions), selective precipitation (using oxalate solutions), and calcination, pure rare earth oxides were obtained. The sorbent shows promising perspective due to its high and fast sorption properties for REEs, good recycling, and high selectivity.
Collapse
Affiliation(s)
- Khalid A. M. Salih
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (K.A.M.S.); (F.G.); (T.F.)
| | - Mohammed F. Hamza
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (K.A.M.S.); (F.G.); (T.F.)
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo 11381, Egypt;
| | - Hamed Mira
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo 11381, Egypt;
| | - Yuezhou Wei
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (K.A.M.S.); (F.G.); (T.F.)
- School of Nuclear Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Gao
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (K.A.M.S.); (F.G.); (T.F.)
| | - Ayman M. Atta
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Toyohisa Fujita
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (K.A.M.S.); (F.G.); (T.F.)
| | - Eric Guibal
- Polymers Composites and Hybrids (PCH), IMT Mines Ales, CEDEX, F-30319 Alès, France
| |
Collapse
|
14
|
de Assis LK, Damasceno BS, Carvalho MN, Oliveira EHC, Ghislandi MG. Adsorption capacity comparison between graphene oxide and graphene nanoplatelets for the removal of coloured textile dyes from wastewater. ENVIRONMENTAL TECHNOLOGY 2020; 41:2360-2371. [PMID: 30623733 DOI: 10.1080/09593330.2019.1567603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
The synthesis of graphene oxide (GO) nanosheets, to be used as an adsorbent for the removal of textile dyes from wastewater, was optimized by the modified Hummers method. The GO nanosheets produced were compared with commercial graphene and characterized by X-ray diffractometry (XRD), Raman spectroscopy, specific surface area analysis, and zero-charge point (pHpcz). Both GO and graphene nanomaterials were originally used to adsorb two coloured dyes (direct red 81 and Indosol SFGL direct blue), which are commonly disposed in textile industrial effluents. Adsorptive assays were performed to determine and compare the variables that most influence the process, such as pH and dye concentration. The mechanisms of adsorption are proposed based on the strong interactions between the graphene oxide (due to its high functionalization with hydroxyl and carboxylic groups) and the active functional groups of the dyes (according to its colour) that, in general, overcome the weaker electrostatic forces between water/commercial graphene/dye systems.
Collapse
Affiliation(s)
- Lilian K de Assis
- Unidade Acadêmica do Cabo de Santo Agostinho (UACSA), Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho, Brazil
| | - Bárbara S Damasceno
- Unidade Acadêmica do Cabo de Santo Agostinho (UACSA), Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho, Brazil
| | - Marilda N Carvalho
- Departamento de Engenharia Química, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - Eveline H C Oliveira
- Departamento de Engenharia Química, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - Marcos G Ghislandi
- Unidade Acadêmica do Cabo de Santo Agostinho (UACSA), Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho, Brazil
| |
Collapse
|
15
|
Araújo CMB, Oliveira do Nascimento GF, Bezerra da Costa GR, Baptisttella AMS, Fraga TJM, Assis Filho RB, Ghislandi MG, Motta Sobrinho MA. Real textile wastewater treatment using nano graphene‐based materials: Optimum pH, dosage, and kinetics for colour and turbidity removal. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Caroline M. B. Araújo
- Chemical Engineering DepartmentUniversidade Federal de Pernambuco (UFPE) Recife Brazil
| | | | | | | | - Tiago J. M. Fraga
- Chemical Engineering DepartmentUniversidade Federal de Pernambuco (UFPE) Recife Brazil
| | - Romero B. Assis Filho
- Chemical Engineering DepartmentUniversidade Federal de Pernambuco (UFPE) Recife Brazil
- Department of ChemistryInstituto Federal de Pernambuco (IFPE) Recife Brazil
| | - Marcos G. Ghislandi
- Engineering Campus (UACSA)Universidade Federal Rural de Pernambuco (UFRPE) Recife Brazil
| | | |
Collapse
|
16
|
do Nascimento GFO, da Costa GRB, de Araújo CMB, Ghislandi MG, da Motta Sobrinho MA. Graphene-based materials production and application in textile wastewater treatment: color removal and phytotoxicity using Lactuca sativa as bioindicator. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 55:97-106. [PMID: 31533527 DOI: 10.1080/10934529.2019.1665951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
The dyes used in textile industries are usually difficult to degrade in aquatic environments, being highly toxic to micro fauna and flora. Thus, textile wastewater treatments have been developed, among them, one that stands out is adsorption process. With the rise of nanomaterials applied to adsorption, graphene oxide (GO) shows promise in the removal of dyes. This work aimed to produce a more economical and environmentally friendly GO by reducing H2SO4 concentration during the synthesis. Adsorption tests were performed with methylene blue (MB) and brilliant blue (BB), adsorbent regeneration tests, as well as a kinetic study using real wastewater, and toxicological assays with lettuce seeds. Results showed that the sample produced with less H2SO4 (GO-21) performed better for MB (99% removal) and BB (29% removal); and recycling test showed that despite the decrease in removal efficiency, it remained high in the first cycles. Kinetics showed that equilibrium was reached in 30 min, removing 67.43% of color and 90.23% of the effluent's turbidity. Phytotoxicity assays indicated that the wastewater treated with GO-21 was the least toxic, compared to other wastewater samples analyzed. Therefore, GO has demonstrated its potential to be an effective and less toxic option to treat textile effluents.[Formula: see text].
Collapse
Affiliation(s)
| | | | | | - Marcos Gomes Ghislandi
- Engineering Campus (UACSA), Universidade Federal Rural de Pernambuco (UFRPE), Cabo de St. Agostinho, Brazil
| | | |
Collapse
|