1
|
Zang P, Liu J, Liu X, Zhang G, Chen J, Li J, Zhang Y. Remarkable enhancement in the N 2 selectivity of NH 3-SCR over the CeNb 3Fe 0.3/TiO 2 catalyst in the presence of chlorobenzene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19309-19323. [PMID: 34713406 DOI: 10.1007/s11356-021-17116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The simultaneous removal of NOx and dioxins is the frontier of environmental catalysis, which is still in the initial stage and poses several challenges. In this study, a series of CeNb3Fex/TiO2 (x = 0, 0.3, 0.6, and 1.0) catalysts were prepared by the sol-gel method and examined for the synergistic removal of NOx and CB. The CeNb3Fe0.3/TiO2 catalyst exhibits an optimum catalytic performance, with an NOx conversion greater than 95% at 260-380 °C. It also exhibits an optimal CB oxidation activity, in which CB promoted both the NOx conversion and N2 selectivity below 250 °C. Moreover, the more favorable ratios of Ce4+ to Ce3+ and plentiful surface-adsorbed oxygen species are the reasons why CeNb3Fe0.3/TiO2 catalyst has better catalytic activity than other catalysts at the lower temperature. Simultaneously, owing to the modulation of Fe to the redox properties of Ce and Nb, the large number of oxygen vacancies and acid sites was generated, and the CeNb3Fe0.3/TiO2 catalyst is beneficial to NOx reduction and CB oxidation. Furthermore, the results of in situ DRIFTS study reveal the NH3-SCR reactions over CeNb3Fe0.3/TiO2 catalysts are mainly conformed to by the L-H mechanism (< 350 °C) and E-R mechanism (> 350 °C), respectively, and the multi-pollutant conversion mechanism in the synergistic reaction was systematically studied.
Collapse
Affiliation(s)
- Pengchao Zang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, People's Republic of China
| | - Jun Liu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, People's Republic of China.
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, National Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Xiaoqing Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, National Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, Shanxi, People's Republic of China
| | - Guojie Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, People's Republic of China.
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, National Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, National Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yongfa Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, People's Republic of China
| |
Collapse
|
2
|
Ratio of adsorptive abilities for NH3 and NOx determined SCR activity of transition-metal catalyst. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
The Study of C3H6 Impact on Selective Catalytic Reduction by Ammonia (NH3-SCR) Performance over Cu-SAPO-34 Catalysts. Catalysts 2021. [DOI: 10.3390/catal11111327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In present work, the catalytic performance of Cu-SAPO-34 catalysts with or without propylene during the NH3-SCR process was conducted, and it was found that the de-NOx activity decreased during low temperature ranges (<350 °C), but obviously improved within the range of high temperatures (>350 °C) in the presence of propylene. The XRD, BET, TG, NH3-TPD, NOx-TPD, in situ DRIFTS and gas-switch experiments were performed to explore the propylene effect on the structure and performance of Cu-SAPO-34 catalysts. The bulk characterization and TG results revealed that neither coke deposition nor the variation of structure and physical properties of catalysts were observed after C3H6 treatment. Generally speaking, at the low temperatures (<350 °C), active Cu2+ species could be occupied by propylene, which inhibited the adsorption and oxidation of NOx species, confining the SCR reaction rate and causing the deactivation of Cu-SAPO-34 catalysts. However, with the increase of reaction temperatures, the occupied Cu2+ sites would be recovered and sequentially participate into the NH3-SCR reaction. Additionally, C3H6-SCR reaction also showed the synergetic contribution to the improvement of NOx conversion at high temperature (>350 °C).
Collapse
|
4
|
Ao R, Ma L, Guo Z, Yang J, Mu L, Yang J, Wei Y. NO oxidation performance and kinetics analysis of BaMO 3 (M=Mn, Co) perovskite catalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6929-6940. [PMID: 33010017 DOI: 10.1007/s11356-020-10993-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Perovskite is an efficient and emerging catalyst for NO oxidation. In this study, BaMnO3 and BaCoO3 perovskite catalysts were synthesized by the sol-gel method, and their catalytic oxidation performances of NO were studied. The catalytic performances indicated that BaMnO3 and BaCoO3 perovskites had the highest NO oxidation activities with the NO conversions of 78.2% at 350 °C and 84.3% at 310 °C, respectively. The high activities of BaMnO3 and BaCoO3 perovskite catalysts were related to the abundant surface adsorption oxygen (OA = 76.21% and 78.57%, respectively) and the high concentration of Mn4+ (Mn4+/Mn = 66.95%) and Co3+ (Co3+/Co = 63.8%). Moreover, the results of FT-IR and kinetics revealed that NO and O2 adsorbed on the surface of samples and combined with the B-O band to form bidentate nitrate and bridging nitrate, which eventually was converted into NO2. The kinetics analysis revealed that the NO oxidation reaction followed the Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) mechanisms. In addition, the activation energies were 36.453 kJ/mol for BaMnO3 and 30.081 kJ/mol for BaCoO3, implying that BaMnO3 and BaCoO3 provide low-cost and efficient catalysts, which can be comparable to Pt noble metal catalysts.
Collapse
Affiliation(s)
- Ran Ao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Liping Ma
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| | - Zhiying Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Jing Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Liusen Mu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Jie Yang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China
| | - Yi Wei
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| |
Collapse
|
5
|
Liu H, You C, Wang H. Experimental and Density Functional Theory Studies on the Zeolite-Based Fe–Ni–W Trimetallic Catalyst for High-Temperature NO x Selective Catalytic Reduction: Identification of Active Sites Suppressing Ammonia Over-oxidation. ACS Catal 2021. [DOI: 10.1021/acscatal.0c03949] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hanzi Liu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Changfu You
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, P. R. China
- Shanxi Research Institute for Clean Energy, Tsinghua University, Shanxi Taiyuan 03000, P. R. China
| | - Haiming Wang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
6
|
Xie C, Sun Y, Zhu B, Song W, Xu M. Adsorption mechanism of NH3, NO, and O2 molecules over the FexOy/AC catalyst surface: a DFT-D3 study. NEW J CHEM 2021. [DOI: 10.1039/d0nj05628f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface model of the FexOy/AC catalyst was constructed and the adsorption mechanism of gas molecules on its surface was revealed.
Collapse
Affiliation(s)
- Chaoyue Xie
- School of Petroleum Engineering
- Changzhou University
- Changzhou
- China
| | - Yunlan Sun
- School of Petroleum Engineering
- Changzhou University
- Changzhou
- China
| | - Baozhong Zhu
- School of Petroleum Engineering
- Changzhou University
- Changzhou
- China
| | - Weiyi Song
- School of Petroleum Engineering
- Changzhou University
- Changzhou
- China
| | - Minggao Xu
- Center for Advanced Combustion and Energy
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
7
|
Souza MS, Araújo RS, Oliveira AC. Optimizing reaction conditions and experimental studies of selective catalytic reduction of NO by CO over supported SBA-15 catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30649-30660. [PMID: 32472510 DOI: 10.1007/s11356-020-09391-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Selective catalytic reduction of NO with CO (CO-SCR) was investigated based on optimizing the operating conditions by response surface methodology (RSM) and by appropriately choosing the supported SBA-15 catalysts. The effects of the CO-SCR reaction parameters such as NO:CO molar ratios and oxygen concentrations on the catalytic performance were determined by RSM to evaluate the NO conversion using a first-order polynomial model. The CuO/SBA-15 and Fe2O3/SBA-15 catalysts were synthesized by a hydrothermal method and characterized by X-ray diffraction (XRD), atomic absorption spectroscopy (AAS), N2 adsorption-desorption (BET), scanning electron microscopy coupled to energy dispersive X-Ray spectroscopy (SEM-EDS), and Fourier transform infrared spectroscopy (FTIR) to investigate the physicochemical properties of the solids. The RSM showed a very good agreement between predicted values and experimental results with the Pareto analysis confirming the accuracy and reliability of the model. The optimized results indicated the maximum NO conversion at 500 °C with using the NO to CO molar ratio of 1:2 (500:1000 ppm) in the absence of oxygen. Under these conditions, CuO/SBA-15 catalyst achieved 99.7% of NO conversion, whereas Fe2O3/SBA-15 had 98.1% of the catalytic parameter. Catalytic tests in CO-SCR reaction were performed on both catalysts at optimum operating conditions with CuO/SBA-15 exhibiting better performance compared to that of Fe2O3/SBA-15. The results revealed that CuO/SBA-15 was a promising catalyst for CO-SCR of NO due to the well-dispersed CuO phase on SBA-15 surface that allows the solid being more tolerant to the presence of oxygen.
Collapse
Affiliation(s)
- Monique S Souza
- Campus do Itaperi, Centro de Ciências e Tecnologia, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Rinaldo S Araújo
- Campus do Itaperi, Centro de Ciências e Tecnologia, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil.
- Departamento de Química e Meio Ambiente, Instituto Federal de Educação, Fortaleza, Ceará, Brazil.
| | - Alcineia C Oliveira
- Campus do Pici - Bloco 940, Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
8
|
Shu D, Liu H, Chen T, Chen D, Zou X, Wang C, Li M, Wang H. The positive effect of siderite-derived α-Fe 2O 3 during coaling on the NO behavior in the presence of NH 3. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12376-12385. [PMID: 31993902 DOI: 10.1007/s11356-020-07829-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Siderite is a naturally occurring mineral that can be found extensively in coal. The structural evolution of siderite in the process of coaling and its performance in the transformation of NO in the presence of NH3 were investigated in this work. In addition, the effects of the coexisting component, including vapor, SO2, and the alkali metal K, were also discussed. Heat treatment was performed at 450, 500, 550, 600, and 700 °C to obtain siderite-derived α-Fe2O3, which was then evaluated in de-NOx via the selective catalytic reduction (SCR) of NO with NH3 in a fixed bed. The X-ray diffraction (XRD), the X-ray fluorescence spectrometer (XRF), N2 adsorption-desorption (BET), the X-ray photoelectron spectrometer (XPS), the scanning electron microscope (SEM), and the transmission electron microscope (TEM) were used to investigate the variations in the morphology and structure of the thermally treated siderite. The results showed that siderite was gradually oxidized and decomposed into α-Fe2O3 with a nanoporous structure and large surface area of 27.27 m2 g-1 after calcination under an air atmosphere. The α-Fe2O3 derived from siderite at 500 °C (H500) exhibited an excellent SCR performance, where the NO conversion rate was great than 90% between 250 and 300 °C due to the pore structure and high specific surface area, additional adsorbed oxygen states, abundant oligomeric Fe oxide clusters, and large amount of acid sites. Regardless of the vapor content, SO2 concentration, and reaction temperature, the α-Fe2O3 derived from siderite at 500 °C (H500) still favored the conversion of NO. When the reaction temperature was lower than 350 °C, H500 favored the conversion of NO even in the presence of an alkali metal (K). The experimental data demonstrated the positive effect of siderite-derived α-Fe2O3 in SCR technology and provided insight into NO behavior in coaling flue gas after NH3 injection.
Collapse
Affiliation(s)
- Daobing Shu
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haibo Liu
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China.
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Tianhu Chen
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dong Chen
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xuehua Zou
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Can Wang
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Mengxue Li
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hanlin Wang
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China
- Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|