1
|
Gabe HB, Queiroga FR, Taruhn KA, Trevisan R. Mitigating oxidative stress in oyster larvae: Curcumin promotes enhanced redox balance, antioxidant capacity, development, and resistance to antifouling compounds. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107231. [PMID: 39756171 DOI: 10.1016/j.aquatox.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Curcumin (CUR) is a natural compound recognized for stimulating the expression of antioxidant genes. This characteristic has been used to promote animal health and production in aquaculture settings. We hypothesized that supplementing embryos of Crassostrea gigas oysters with CUR would improve their antioxidant capacity, development, and resilience to stress. Embryos were exposed to CUR ranging from 0.03 to 30 µM for 24 h. Their development was assessed, along with measurements of glutathione levels, glutathione S-transferase activity, antioxidant capacity, production of reactive oxygen species (ROS), metabolic activity, and resistance to organic hydroperoxide and the antifouling compound dichlorooctylisothiazolinone (DCOIT). Low curcumin concentrations (up to 1 μM) activated the d-larvae antioxidant system, with a significant threefold increase in glutathione levels and a 50 % decrease in ROS production. This enhancement in antioxidant defense improved the ability of larvae to detoxify organic hydroperoxide. It also resulted in larger larval size and increased survival rates, whether under normal conditions or exposure to peroxide or DCOIT. CUR shows great promise in supporting larval development, but high concentrations were toxic (EC50 = 2.90 μM), probably due to excessive antioxidant activation. Our results indicate that the antioxidant system may play a role in controlling bivalve early development. Understanding how antioxidants influence redox balance and gene expression during early life can enhance our knowledge of stress response mechanisms in marine organisms, offering insights into how they cope with pollutants and environmental challenges. Integrating CUR and antioxidant defense pathway approaches into aquaculture practices could boost productivity and sustainability in oyster aquaculture.
Collapse
Affiliation(s)
- Heloísa Bárbara Gabe
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil; Univ Brest, Ifremer, CNRS, IRD, LEMAR, IUEM, F-29280 Plouzané, France
| | | | - Karine Amabile Taruhn
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Rafael Trevisan
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, IUEM, F-29280 Plouzané, France.
| |
Collapse
|
2
|
Dourdin TS, Berthelin C, Guyomard K, Morin A, Morandi N, Elie N, Villain-Naud N, Rivière G, Sussarellu R. The Pacific oyster reproduction is affected by early-life exposure to environmental pesticide mixture: A multigenerational study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173569. [PMID: 38810751 DOI: 10.1016/j.scitotenv.2024.173569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Pesticides threat marine organisms worldwide. Among them, the Pacific oyster is a bivalve mollusc model in marine ecotoxicology. A large body of literature already stated on the multiple-scale effects pesticides can trigger in the Pacific oyster, throughout its life cycle and in a delayed manner. In particular, reproductive toxicity is of major concern because of its influence on population dynamics. However, past studies mostly investigated pesticide reprotoxicity as a direct effect of exposure during gametogenesis or directly on gametes and little is known about the influence of an early embryo exposure on the breed capacity. Therefore, we studied delayed and multigenerational consequences through gametogenesis features (i.e. sex ratio, glycogen content, gene expression) and reproductive success in two consecutive oyster generations (F0 and F1) exposed to an environmentally-relevant pesticide mixture (sum nominal concentration: 2.85 μg.L-1) during embryo-larval development (0-48 h post fertilization, hpf). In the first generation, glycogen content increased in exposed individuals and the expression of some gametogenesis target genes was modified. The reproductive success measured 48 hpf was higher in exposed individuals. A multigenerational influence was observed in the second generation, with feminisation, acceleration of gametogenesis processes and the sex-specific modification of glycogen metabolism in individuals from exposed parents. This study is the first to highlight the delayed effects on reproduction induced by an early exposure to pesticides, and its multigenerational implications in the Pacific oyster. It suggests that environmental pesticide contamination can have impacts on the recruitment and the dynamics of natural oyster populations exposed during their embryo-larval phase.
Collapse
Affiliation(s)
- Thomas Sol Dourdin
- Ifremer, CCEM Contamination Chimique des Écosystèmes Marins, F-44000, France
| | - Clothilde Berthelin
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR8067, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche et Développement (IRD), Sorbonne Université (SU), Université de Caen Normandie (UCN), Université des Antilles (UA), 75231 Paris CEDEX, France
| | - Killian Guyomard
- Ifremer, EMMA Plateforme Expérimentale Mollusques Marins Atlantique, F-85230, France
| | - Alicia Morin
- Ifremer, CCEM Contamination Chimique des Écosystèmes Marins, F-44000, France
| | - Nathan Morandi
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR8067, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche et Développement (IRD), Sorbonne Université (SU), Université de Caen Normandie (UCN), Université des Antilles (UA), 75231 Paris CEDEX, France
| | - Nicolas Elie
- Université de Caen Normandie, Structure Federative 4207 'Normandie Oncologie', PLATON Services Unit, Virtual'His, F-14000 Caen, France
| | - Nadège Villain-Naud
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR8067, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche et Développement (IRD), Sorbonne Université (SU), Université de Caen Normandie (UCN), Université des Antilles (UA), 75231 Paris CEDEX, France
| | - Guillaume Rivière
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR8067, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche et Développement (IRD), Sorbonne Université (SU), Université de Caen Normandie (UCN), Université des Antilles (UA), 75231 Paris CEDEX, France
| | | |
Collapse
|
3
|
Sol Dourdin T, Guyomard K, Rabiller M, Houssais N, Cormier A, Le Monier P, Sussarellu R, Rivière G. Ancestors' Gift: Parental Early Exposure to the Environmentally Realistic Pesticide Mixture Drives Offspring Phenotype in a Larger Extent Than Direct Exposure in the Pacific Oyster, Crassostrea gigas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1865-1876. [PMID: 38217500 DOI: 10.1021/acs.est.3c08201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Marine organisms are threatened by the presence of pesticides in coastal waters. Among them, the Pacific oyster is one of the most studied invertebrates in marine ecotoxicology where numerous studies highlighted the multiscale impacts of pesticides. In the past few years, a growing body of literature has reported the epigenetic outcomes of xenobiotics. Because DNA methylation is an epigenetic mark implicated in organism development and is meiotically heritable, it raises the question of the multigenerational implications of xenobiotic-induced epigenetic alterations. Therefore, we performed a multigenerational exposure to an environmentally relevant mixture of 18 pesticides (nominal sum concentration: 2.85 μg·L-1) during embryo-larval stages (0-48 hpf) of a second generation (F1) for which parents where already exposed or not in F0. Gene expression, DNA methylation, and physiological end points were assessed throughout the life cycle of individuals. Overall, the multigenerational effect has a greater influence on the phenotype than the exposure itself. Thus, multigenerational phenotypic effects were observed: individuals descending from exposed parents exhibited lower epinephrine-induced metamorphosis and field survival rates. At the molecular level, RNA-seq and Methyl-seq data analyses performed in gastrula embryos and metamorphosis-competent pediveliger (MCP) larvae revealed a clear F0 treatment-dependent discrimination. Some genes implicated into shell secretion and immunity exhibited F1:F0 treatment interaction patterns (e.g., Calm and Myd88). Those results suggest that low chronic environmental pesticide contamination can alter organisms beyond the individual scale level and have long-term adaptive implications.
Collapse
Affiliation(s)
- Thomas Sol Dourdin
- Ifremer, Unité Contamination Chimique des Ecosystèmes Marins, 44311 Cedex 03 Nantes, France
| | - Killian Guyomard
- Ifremer, Plateforme Mollusques Marins Bouin, 85029 Bouin, France
| | | | - Nina Houssais
- Ifremer, Unité Contamination Chimique des Ecosystèmes Marins, 44311 Cedex 03 Nantes, France
| | - Alexandre Cormier
- Ifremer, Service de Bioinformatique de l'Ifremer, 29280 Brest, France
| | - Pauline Le Monier
- Ifremer, Unité Contamination Chimique des Ecosystèmes Marins, 44311 Cedex 03 Nantes, France
| | - Rossana Sussarellu
- Ifremer, Physiologie et Toxines des Microalgues Toxiques, 44311 Cedex 03 Nantes, France
| | - Guillaume Rivière
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR7208, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche et Développement (IRD), Sorbonne Université (SU), Université de Caen Normandie (UCN), Université des Antilles (UA), 75231 Paris Cedex, France
- BOREA, UFR des Sciences, Université de Caen-Normandie, Esplanade de la Paix, 14032 Caen Cedex, France
| |
Collapse
|
4
|
Shukla S, Jhamtani RC, Agarwal R. Biochemical and gene expression alterations due to individual exposure of atrazine, dichlorvos, and imidacloprid and their combination in zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118291-118303. [PMID: 37821735 DOI: 10.1007/s11356-023-30160-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
In environmental toxicology, combined toxicity has emerged as an important concern. Atrazine (ATZ), dichlorvos (DIC), and imidacloprid (IMD) are the major pesticides, extensively used to control insect, flies, mosquitoes, and weed. Here, we investigate whether the exposure to three different types of pesticides individually and in combination for 24 h alters antioxidant enzyme responses in zebrafish (Danio rerio). Oxidative stress parameters (biochemical and mRNA expression), acetylcholinesterase (AChE) activity, and Metallothionein-II (MT-II) mRNA expression levels were measured. Present work includes toxicological assessment of individual and combined (CMD) exposure of ATZ (185.4 µM), DIC (181 µM), IMD (97.8 µ), and CMD (ATZ 92.7 µM + DIC 90.5 µM + IMD 48.9 µM), in the liver, kidney, and brain of adult zebrafish. Lipid peroxidation (LPO), glutathione (GSH) content, AChE, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity along with mRNA expression of SOD, CAT, GPx, and MT-II were evaluated. Briefly, LPO, GSH content, the activity of AChE, and all antioxidant enzymes enhanced significantly in individual exposure, which was further altered in the CMD group. The mRNA expression of SOD, CAT, GPx, and MT-II in the liver and kidney showed significant down-regulation in all exposed groups. In the brain, significant upregulation in mRNA expression of SOD, CAT, GPx, and MT-II was observed in DIC and IMD groups, while ATZ and CMD showed significant downregulation except for GPx. Findings postulate that the CMD group exhibits synergistic toxic manifestation. The present study provides the baseline data on the combined toxic effects of pesticides and suggests regulating the use of pesticides.
Collapse
Affiliation(s)
- Saurabh Shukla
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India
- Department of Forensic Science, School of Bioengineering and Bioscience, Lovely Professional University, Jalandhar, 144411, India
| | - Reena C Jhamtani
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India
- School of Forensic Science, Centurion University of Technology and Management, 752050, Bhubhaneshwar, Orrisa, India
| | - Rakhi Agarwal
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India.
- National Forensic Sciences University, Delhi Campus, Delhi, 110085, India.
| |
Collapse
|
5
|
Sol Dourdin T, Rivière G, Cormier A, Di Poi C, Guyomard K, Rabiller M, Akcha F, Bah Sadialiou T, Le Monier P, Sussarellu R. Molecular and phenotypic effects of early exposure to an environmentally relevant pesticide mixture in the Pacific oyster, Crassostrea gigas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121472. [PMID: 36965683 DOI: 10.1016/j.envpol.2023.121472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/06/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Early life stages are crucial for organism development, especially for those displaying external fertilization, whose gametes and early stages face environmental stressors such as xenobiotics. The pacific oyster, Crassostrea gigas, is considered a model species in ecotoxicology because of its ecological characteristics (benthic, sessile, filter feeding). So far studies have investigated the impact of xenobiotics at embryotoxic, genotoxic and physiological endpoints, sometimes at the multigenerational scale, highlighting the role of epigenetic mechanisms in transmitting alterations induced by exposure to single xenobiotics. However, to date, little is known about the impact of environmentally-mimicking contaminants cocktails. Thus, we examined the impact of an early exposure to environmentally relevant mixture on the Pacific oyster life history. We studied transcriptomic, epigenetic and physiological alterations induced in oysters exposed to 18 pesticides and metals at environmental concentration (nominal sum concentration: 2.85 μg.L-1, measured sum concentration: 3.74 ± 0.013 μg.L-1) during embryo-larval stage (0-48 h post fertilization, hpf). No significant differences in embryo-larval abnormalities at 24 hpf were observed during larval and spat rearing; the swimming behaviour of exposed individuals was disturbed, while they were longer and heavier at specific time points, and exhibited a lower epinephrine-induced metamorphosis rate as well as a higher survival rate in the field. In addition, RNA-seq analyses of gastrula embryos revealed the differential expression of development-related genes (e.g. Hox orthologues and cell cycle regulators) between control and exposed oysters. Whole-genome DNA methylation analyses demonstrated a significant modification of DNA methylation in exposed larvae marked by a demethylation trend. Those findings suggest that early exposure to an environmentally relevant pesticide mixture induces multi-scale latent effects possibly affecting life history traits in the Pacific oyster.
Collapse
Affiliation(s)
- Thomas Sol Dourdin
- Ifremer, Unité Contamination Chimique des Ecosystèmes Marins, Nantes, France.
| | - Guillaume Rivière
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR8067, Muséum National D'Histoire Naturelle (MNHN), Centre National de La Recherche Scientifique (CNRS), Institut de Recherche et Développement (IRD), Sorbonne Université (SU), Université de Caen Normandie (UCN), Université des Antilles (UA), 75231, Paris, CEDEX, France
| | | | - Carole Di Poi
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), France
| | | | | | - Farida Akcha
- Ifremer, Unité Contamination Chimique des Ecosystèmes Marins, Nantes, France
| | | | - Pauline Le Monier
- Ifremer, Unité Contamination Chimique des Ecosystèmes Marins, Nantes, France
| | - Rossana Sussarellu
- Ifremer, Physiologie et Toxines des Microalgues Toxiques, Nantes, France
| |
Collapse
|
6
|
Jeong H, Byeon E, Kim DH, Maszczyk P, Lee JS. Heavy metals and metalloid in aquatic invertebrates: A review of single/mixed forms, combination with other pollutants, and environmental factors. MARINE POLLUTION BULLETIN 2023; 191:114959. [PMID: 37146547 DOI: 10.1016/j.marpolbul.2023.114959] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/07/2023]
Abstract
Heavy metals (HMs) and metalloid occur naturally and are found throughout the Earth's crust but they are discharged into aquatic environments at high concentrations by human activities, increasing heavy metal pollution. HMs can bioaccumulate in higher organisms through the food web and consequently affect humans. In an aquatic environment, various HMs mixtures can be present. Furthermore, HMs adsorb on other environmental pollutants, such as microplastics and persistent organic pollutants, causing a synergistic or antagonistic effect on aquatic organisms. Therefore, to understand the biological and physiological effects of HMs on aquatic organisms, it is important to evaluate the effects of exposure to combinations of complex HM mixtures and/or pollutants and other environmental factors. Aquatic invertebrates occupy an important niche in the aquatic food chain as the main energy link between higher and lower organisms. The distribution of heavy metals and the resulting toxic effects in aquatic invertebrates have been extensively studied, but few reports have dealt with the relationship between HMs, pollutants, and environmental factors in biological systems with regard to biological availability and toxicity. This review describes the overall properties of individual HM and their effects on aquatic invertebrates and comprehensively reviews physiological and biochemical endpoints in aquatic invertebrates depending on interactions among HMs, other pollutants, and environmental factors.
Collapse
Affiliation(s)
- Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
7
|
Hu G, Wang H, Shi H, Wan Y, Zhu J, Li X, Wang Q, Wang Y. Mixture toxicity of cadmium and acetamiprid to the early life stages of zebrafish (Danio rerio). Chem Biol Interact 2022; 366:110150. [PMID: 36084721 DOI: 10.1016/j.cbi.2022.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022]
Abstract
Aquatic organisms are often exposed to contaminants that occur in the natural environment. Nevertheless, the toxic effects of chemical combinations on aquatic animals and their underlying toxic mechanisms for dealing with such exposures are still not fully understood. In this study, we investigated the combined effects of cadmium (Cd) and acetamiprid (ACE) on zebrafish (Danio rerio) using various endpoints. Cd exhibited a 96-h LC50 value of 4.77 mg a.i. L-1 against zebrafish embryos, which was lower than that of ACE (152.6 mg a.i. L-1). In contrast, the 96-h LC50 value of the mixture of Cd and ACE was 157.4 mg a.i. L-1. The mixture of Cd and ACE had a synergetic effect on the organisms. The activities of T-SOD, POD, and CarE were significantly changed in most exposures compared with the control group. In addition, five genes (TRα, crh, Tnf, IL, and P53) involved in oxidative stress, cellular apoptosis, the immune system, and the endocrine system exhibited more remarkable changes when exposed to chemical mixtures relative to their individual counterparts, demonstrating variations in the cellular and mRNA expression levels induced by the mixture exposure of ACE and Cd during the embryonic development of zebrafish. Therefore, these results indicated that the combined pollution of ACE and Cd could be a potentially hazardous factor, and further investigation is necessary for the safety evaluation and application of ACE. Moreover, further investigation on the combined toxicities of various chemicals must be performed to determine the chemical mixtures with synergistic responses.
Collapse
Affiliation(s)
- Guixian Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Hao Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, Jiangsu, China
| | - Yujie Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Jiahong Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xue Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
8
|
Hu G, Wang H, Wan Y, Zhou L, Wang Q, Wang M. Combined toxicities of cadmium and five agrochemicals to the larval zebrafish (Danio rerio). Sci Rep 2022; 12:16045. [PMID: 36163367 PMCID: PMC9512934 DOI: 10.1038/s41598-022-20364-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Different pollutants usually co-exist in the natural environment, and the ecological and health risk assessment of agrochemicals needs to be carried out based on the combined toxicological effects of pollutants. To examine the combined toxicity to aquatic organisms, the effects of cadmium (Cd) and five pesticides (acetamiprid, carbendazim, azoxystrobin, chlorpyrifos, and bifenthrin) mixture on zebrafish (Danio rerio) larvae were assessed. The data from the 96-h toxicity test indicated that bifenthrin possessed the highest toxicity to D. rerio with the LC50 value of 0.15 mg L-1, followed by chlorpyrifos (0.36 mg L-1) and azoxystrobin (0.63 mg L-1). Cd (6.84 mg L-1) and carbendazim (8.53 mg L-1) induced the intermediate toxic responses, while acetamiprid (58.39 mg L-1) presented the lowest toxicity to the organisms. Pesticide mixtures containing chlorpyrifos and bifenthrin or acetamiprid and carbendazim showed synergistic impacts on the zebrafish. Besides, two binary combinations of Cd-acetamiprid and Cd-chlorpyrifos also displayed a synergistic effect on D. rerio. Our results offered a better idea of the mixed ecological risk assessment of Cd and different agricultural chemicals to aquatic organisms. Our findings better interpreted how the interaction between Cd and various agrochemicals changed their toxicity to aquatic vertebrates and provided valuable insights into critical impacts on the ecological hazard of their combinations.
Collapse
Affiliation(s)
- Guixian Hu
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hao Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yujie Wan
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liangliang Zhou
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
9
|
Kuchovská E, Gonzalez P, Bláhová L, Barré M, Gouffier C, Cachot J, Roméro-Ramirez A, Bláha L, Morin B. Pesticide mixture toxicity assessment through in situ and laboratory approaches using embryo-larval stages of the pacific oyster (Magallana gigas). MARINE ENVIRONMENTAL RESEARCH 2021; 169:105390. [PMID: 34174543 DOI: 10.1016/j.marenvres.2021.105390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/31/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Worsened state of oysters in French Arcachon Bay, demand an investigation of possible causes. This study evaluated the effects of an environmentally relevant mixture of five common pesticides on the early-life stages of the Pacific oyster (Magallana gigas). Laboratory assays with artificial mixture and in situ transplantation were complementarily used to investigate a series of sublethal endpoints. The laboratory exposure revealed developmental toxicity at 0.32 μg/L, which corresponds to mixture concentrations in Arcachon Bay. Downregulation of some gene transcriptions was observed at environmental level. No difference in larvae development was revealed among the three sites in Arcachon Bay. This study was the first to evaluate locomotion of oyster larvae exposed in situ. Suspected poor water quality in the inner part of Arcachon Bay was reflected by impairment at the molecular level. In conclusion, current concentrations of the tested pesticides in Arcachon Bay hinder larval development and affect several biological functions.
Collapse
Affiliation(s)
- Eliška Kuchovská
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00, Brno, Czech Republic; Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | - Patrice Gonzalez
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | - Lucie Bláhová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Mathilde Barré
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | | | - Jérôme Cachot
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | | | - Luděk Bláha
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Bénédicte Morin
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France.
| |
Collapse
|
10
|
Tallec K, Paul-Pont I, Boulais M, Le Goïc N, González-Fernández C, Le Grand F, Bideau A, Quéré C, Cassone AL, Lambert C, Soudant P, Huvet A. Nanopolystyrene beads affect motility and reproductive success of oyster spermatozoa ( Crassostrea gigas). Nanotoxicology 2020; 14:1039-1057. [PMID: 32813582 DOI: 10.1080/17435390.2020.1808104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Oysters are keystone species that use external fertilization as a sexual mode. The gametes are planktonic and face a wide range of stressors, including plastic litter. Nanoplastics are of increasing concern because their size allows pronounced interactions with biological membranes, making them a potential hazard to marine life. In the present study, oyster spermatozoa were exposed for 1 h to various doses (from 0.1 to 25 µg mL-1) of 50-nm polystyrene beads with amine (50-NH2 beads) or carboxyl (50-COOH beads) functions. Microscopy revealed adhesion of particles to the spermatozoa membranes, but no translocation of either particle type into cells. Nevertheless, the 50-NH2 beads at 10 µg mL-1 induced a high spermiotoxicity, characterized by a decrease in the percentage of motile spermatozoa (-79%) and in the velocity (-62%) compared to control spermatozoa, with an overall drop in embryogenesis success (-59%). This major reproduction failure could be linked to a homeostasis disruption in exposed spermatozoa. The 50-COOH beads hampered spermatozoa motility only when administered at 25 µg mL-1 and caused a decrease in the percentage of motile spermatozoa (-66%) and in the velocity (-38%), but did not affect embryogenesis success. Microscopy analyses indicated these effects were probably due to physical blockages by microscale aggregates formed by the 50-COOH beads in seawater. This toxicological study emphasizes that oyster spermatozoa are a useful and sensitive model for (i) deciphering the fine interactions underpinning nanoplastic toxicity and (ii) evaluating adverse effects of plastic nanoparticles on marine biota while waiting for their concentration to be known in the environment.
Collapse
Affiliation(s)
- K Tallec
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - I Paul-Pont
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - M Boulais
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - N Le Goïc
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | | | - F Le Grand
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - A Bideau
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - C Quéré
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - A-L Cassone
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - C Lambert
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - P Soudant
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - A Huvet
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| |
Collapse
|