1
|
Engineered chimeric insecticidal crystalline protein improves resistance to lepidopteran insects in rice (Oryza sativa L.) and maize (Zea mays L.). Sci Rep 2022; 12:12529. [PMID: 35869123 PMCID: PMC9307649 DOI: 10.1038/s41598-022-16426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractThe insecticidal crystalline proteins (Crys) are a family of insect endotoxin functioning in crop protection. As insects keep evolving into tolerance to the existing Crys, it is necessary to discover new Cry proteins to overcome potential threatens. Crys possess three functional domains at their N-termini, and the most active region throughout evolution was found at the domain-III. We swapped domain-IIIs from various Cry proteins and generated seven chimeric proteins. All recombinants were expressed in Escherichia coli and their toxicity was assessed by dietary exposure assays. Three of the seven Crys exhibited a high toxicity to Asian corn borer over the controls. One of them, Cry1Ab-Gc, a chimeric Cry1Ab being replaced with the domain-III of Cry1Gc, showed the highest toxicity to rice stem borer when it was over-expressed in Oryza sativa. Furthermore, it was also transformed into maize, backcrossed into commercial maize inbred lines and then produced hybrid to evaluate their commercial value. Transgenic maize performed significant resistance to the Asian corn borer without affecting the yield. We further showed that this new protein did not have adverse effects on the environment. Our results indicated that domain III swapped of Crys could be used as an efficient method for developing new engineered insecticidal protein.
Collapse
|
2
|
Yang Y, Chen Y, Xue J, Wang Y, Song X, Li Y. Impact of Transgenic Cry1Ab/2Aj Maize on Abundance of Non-Target Arthropods in the Field. PLANTS (BASEL, SWITZERLAND) 2022; 11:2520. [PMID: 36235387 PMCID: PMC9572736 DOI: 10.3390/plants11192520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Transgenic Bacillus thuringiensis (Bt) maize has broad prospects for application in China. Before commercialization, it is necessary to assess possible ecological impacts, including impacts on non-target arthropods (NTAs) in the field. In the present study, transgenic Bt maize expressing cry1Ab/2Aj and its corresponding non-transformed near isoline were planted under the same environmental and agricultural conditions, and arthropods in the field were collected during the three main growth stages of maize. In a one year trial, the results showed the composition of NTA communities in the transgenic and control maize fields were similar. There were no significant differences for community-level parameters of species richness (S), Shannon-Wiener diversity index (H'), evenness index (J) and Simpson's dominant concentration (C) between the two types of maize fields. Likewise, a Bray-Curtis dissimilarity and distance analysis showed that Cry1Ab/2Aj toxin exposure did not increase community dissimilarities between Bt and non-Bt maize plots and that the structure of the NTAs community was similar on the two maize varieties. Furthermore, planting of the transgenic cry1Ab/2Aj maize did not affect the density or composition of non-target decomposers, herbivores, predators, parasitoids and pollinator guilds. In summary, our results showed that planting of Bt maize producing Cry1Ab/Cry2Aj proteins do not adversely affect population dynamics and diversity of NTAs.
Collapse
Affiliation(s)
- Yan Yang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou 570228, China
- State Key Laboratory for Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yi Chen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571025, China
- Sanya Research Institute of the Chinese Academy of Tropical Agricultural Sciences, Sanya 572022, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Jiabao Xue
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou 570228, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571025, China
- Sanya Research Institute of the Chinese Academy of Tropical Agricultural Sciences, Sanya 572022, China
| | - Yuanyuan Wang
- State Key Laboratory for Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinyuan Song
- Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Yunhe Li
- State Key Laboratory for Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Ren Z, Yang M, He H, Ma Y, Zhou Y, Liu B, Xue K. Transgenic Maize Has Insignificant Effects on the Diversity of Arthropods: A 3-Year Study. PLANTS 2022; 11:plants11172254. [PMID: 36079638 PMCID: PMC9460771 DOI: 10.3390/plants11172254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
In order to provide more evidence for the evaluation of the ecological risks of transgenic maize, arthropod population dynamics and biodiversity in fields planted with two kinds of transgenic maize (DBN9868, expressing the PAT and EPSPS genes, and DBN9936, expressing the Cry1Ab and EPSPS gene) were investigated by direct observation and trapping for three years. The recorded arthropod species belonged to 19 orders and 87 families, including Aphidoidea, Chrysomelidae, Coccinellidae, Chrysopidae and Araneae. The species richness, Shannon–Wiener diversity index, Pielou evenness index, dominance index and community similarity index of arthropod communities in maize fields were statistically analyzed, and the results showed that (1) the biodiversity difference of arthropod communities between transgenic maize and non-transgenic maize was smaller than that between different conventional cultivars; (2) the differences between ground-dwelling arthropod communities were less obvious than those between plant-inhabiting arthropod communities; and (3) Lepidoptera, the target pests of Bt maize, were not the dominant population in maize fields, and the dominant arthropod population in maize fields varied greatly between years and months. Combining those results, we concluded that the transgenic maize DBN9868 and DBN9936 had no significant effect on the arthropod communities in the field.
Collapse
Affiliation(s)
- Zhentao Ren
- Country Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Muzhi Yang
- Country Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Haopeng He
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yanjie Ma
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Biao Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- Correspondence: (B.L.); (K.X.)
| | - Kun Xue
- Country Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- Correspondence: (B.L.); (K.X.)
| |
Collapse
|
4
|
Feng Y, Wang X, Du T, Shu Y, Tan F, Wang J. Effects of Exogenous Salicylic Acid Application to Aboveground Part on the Defense Responses in Bt (Bacillus thuringiensis) and Non-Bt Corn (Zea mays L.) Seedlings. PLANTS 2022; 11:plants11162162. [PMID: 36015465 PMCID: PMC9416209 DOI: 10.3390/plants11162162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022]
Abstract
Bt (Bacillus thuringiensis) corn is one of the top three large-scale commercialized anti-insect transgenic crops around the world. In the present study, we tested the Bt protein content, defense chemicals contents, and defense enzyme activities in both the leaves and roots of Bt corn varieties 5422Bt1 and 5422CBCL, as well as their conventional corn 5422 seedlings, with two fully expanded leaves which had been treated with 2.5 mM exogenous salicylic acid (SA) to the aboveground part for 24 h. The result showed that the SA treatment to the aboveground part could significantly increase the polyphenol oxidase activity of conventional corn 5422, the Bt protein content, and peroxidase activities of Bt corn 5422Bt1, as well as the polyphenol oxidase and peroxidase activity of Bt corn 5422CBCL in the leaves. In the roots, the polyphenol oxidase and peroxidase activity of conventional corn 5422, the polyphenol oxidase and superoxide dismutase activities of Bt corn 5422Bt1, the DIMBOA (2,4-dihydroxy-7-methoxy-2H, 1, 4-benzoxazin-3 (4H)-one) content, and four defense enzymes activities of Bt corn 5422CBCL were systematically increased. These findings suggest that the direct effect of SA application to aboveground part on the leaf defense responses in Bt corn 5422CBCL is stronger than that in non-Bt corn. Meanwhile, the systemic effect of SA on the root defense responses in Bt corn 5422CBCL is stronger than that in conventional corn 5422 and Bt corn 5422Bt1. It can be concluded that the Bt gene introduction and endogenous chemical defense responses of corns act synergistically during the SA-induced defense processes to the aboveground part. Different transformation events affected the root defense response when the SA treatment was applied to the aboveground part.
Collapse
Affiliation(s)
- Yuanjiao Feng
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Guangzhou 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyi Wang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Guangzhou 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Tiantian Du
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Guangzhou 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yinghua Shu
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Guangzhou 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Fengxiao Tan
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Guangzhou 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jianwu Wang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Guangzhou 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-136-0286-3467
| |
Collapse
|
5
|
García-Ruiz E, Cobos G, Sánchez-Ramos I, Pascual S, Chueca MC, Escorial MC, Santín-Montanyá I, Loureiro Í, González-Núñez M. Dynamics of canopy-dwelling arthropods under different weed management options, including glyphosate, in conventional and genetically modified insect-resistant maize. INSECT SCIENCE 2021; 28:1121-1138. [PMID: 32458593 DOI: 10.1111/1744-7917.12825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
The use of genetically modified varieties tolerant to herbicides (HT varieties) and resistant to insects (Bt varieties) in combination with application of a broad-spectrum herbicide such as glyphosate could be an effective option for the simultaneous control of weeds and pests in maize. Nevertheless, the possible impact of these tools on nontarget arthropods still needs to be evaluated. In a field study in central Spain, potential changes in populations of canopy-dwelling arthropods in Bt maize under different weed management options, including glyphosate application, were investigated. Canopy-dwelling arthropods were sampled by visual inspection and yellow sticky traps. The Bt variety had no effect on any group of studied arthropods, except for the expected case of corn borers-the target pests of Bt maize. Regarding the effects of herbicide regimes, the only observed difference was a lower abundance of Cicadellidae and Mymaridae on yellow sticky traps in plots not treated with pre-emergence herbicides. This effect was especially pronounced in a treatment involving two glyphosate applications. The decrease in Cicadellidae and Mymaridae populations was associated with a higher density of weeds in plots, which may have hindered colonization of the crop by leafhoppers. These differences, however, were only significant in the last year of the study. The low likelihood of the use of glyphosate- and herbicide-tolerant varieties for weed control triggering important effects on the nontarget arthropod fauna of the maize canopy is discussed.
Collapse
Affiliation(s)
- Esteban García-Ruiz
- Plant Protection Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Guillermo Cobos
- Plant Protection Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Ismael Sánchez-Ramos
- Plant Protection Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Susana Pascual
- Plant Protection Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - María-Cristina Chueca
- Plant Protection Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - María-Concepción Escorial
- Plant Protection Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Inés Santín-Montanyá
- Plant Protection Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Íñigo Loureiro
- Plant Protection Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Manuel González-Núñez
- Plant Protection Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
6
|
Yin Y, Xu Y, Cao K, Qin Z, Zhao X, Dong X, Shi W. Impact assessment of Bt maize expressing the Cry1Ab and Cry2Ab protein simultaneously on non-target arthropods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21552-21559. [PMID: 32279254 DOI: 10.1007/s11356-020-08665-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Transgenic maize expressing the Cry1Ab and Cry2Ab protein simultaneously from Bacillus thuringiensis (Bt-maize) has been grown for farm-scale study to investigate its potential impact to non-target arthropod (NTA). The trials were conducted between Bt maize 2A-7 and its parental line (B73-329) in Beijing, China, over 3 years. Richness (C), Shannon index (H), Pielou index (J), Simpson index (D), and Bray-Curtis index were used to evaluate the population dynamics and biodiversity of the dominant arthropods from per 50 plants in crop field. The mainly abundant groups were Aphidoidea, Araneae, Coccinellidae, Anthocoridae, and Thripidae which represented about 90% of the total number of NTA. Although the abundance of NTA varied from year to year, there is no significant difference between Bt maize and non-Bt maize field. Fluctuations were found at individual sample dates, but the trend of these descriptors remained consistent. Further analysis showed the biodiversity indexes of the dominant arthropods C, H, J, D, and Bray-Curtis dissimilarity between Bt maize producing Cry1Ab and Cry2Ab toxin simultaneously and its parental line had no significant difference except for some sampling dates. These results suggested that Bt maize is compatible with the NTAs and provides further evidence of the ecological impact of genetically modified maize.
Collapse
Affiliation(s)
- Yue Yin
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Yudi Xu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Kaili Cao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Zifang Qin
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Xinxin Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Xuehui Dong
- Department of Agriculture Science, China Agricultural University, Beijing, China
| | - Wangpeng Shi
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China.
| |
Collapse
|