1
|
Wang X, Tao T, Hu K, Lv Y, Zhang Q, Yu L, Jin B, Xu Y, Cao X, Du J. Influence of antidepressants on stream microbiota: Consequences for leaf itter breakdown and nutrient cycling. ENVIRONMENTAL RESEARCH 2025; 271:121083. [PMID: 39954928 DOI: 10.1016/j.envres.2025.121083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
As an emerging pollutant, antidepressants in wastewater have received extensive attention due to their metabolic stability and antimicrobial activity in aquatic systems. However, the scarcity of experimental data limits the validation of their potential impacts on ecosystem functionality. This study examined the effects of fluoxetine and amitriptyline (0-100 ng L-1) on microbial decomposers in stream ecosystems. These two antidepressants exhibited different effects on the process of leaf litter decomposition. Fluoxetine at 1 ng L-1 inhibited the dominance of functional bacteria (Caulobacter and Flavobacterium) and cellobiohydrolase activity, significantly reducing the leaf decomposition rate by 11.5%. Notably, amitriptyline at 10 ng L-1 promoting this ecological process by enhancing fungal biomass and most enzyme activities, and increasing the abundance of functional fungi (Anguillospora and Setophaeosphaeria). Nevertheless, when amitriptyline concentrations exceeded 10 ng L-1, nitrogen-limitation was observed in microbial decomposers. These findings illustrate the complexity of the aquatic microbial community in responding to external factors, underscoring the importance of further research into the effects of antidepressants on the nutrient cycling and organic matter dynamics of ecosystems.
Collapse
Affiliation(s)
- Xilin Wang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Tianying Tao
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Keying Hu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yangyang Lv
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Qian Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Luyao Yu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Baodan Jin
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Province, China
| | - Yuanqian Xu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Province, China
| | - Xia Cao
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Province, China
| | - Jingjing Du
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Province, China.
| |
Collapse
|
2
|
Imiuwa ME, Baynes A, Kanda R, Routledge EJ. Environmentally relevant concentrations of the tricyclic antidepressant, amitriptyline, affect feeding and reproduction in a freshwater mollusc. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116656. [PMID: 38945099 DOI: 10.1016/j.ecoenv.2024.116656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Antidepressant drugs (ADDs) are one of the most extensively used pharmaceuticals globally. They act at particularly low therapeutic concentrations to modulate monoamine neurotransmission, which is one of the most evolutionary conserved pathways in both humans and animal species including invertebrates. As ADDs are widely detected in the aquatic environment at low concentrations (ng/L to low µg/L), their potential to exert drug-target mediated effects in aquatic species has raised serious concerns. Amitriptyline (AMI) is the most widely used tricyclic ADD, while monoamines, the target of ADDs, are major bioregulators of multiple key physiological processes including feeding, reproduction and behaviour in molluscs. However, the effects of AMI on feeding, reproduction and mating behaviour are unknown in molluscs despite their ecological importance, diversity and reported sensitivity to ADDs. To address this knowledge gap, we investigated the effects of environmentally relevant concentrations of AMI (0, 10, 100, 500 and 1000 ng/L) on feeding, reproduction and key locomotor behaviours, including mating, in the freshwater gastropod, Biomphalaria glabrata over a period of 28 days. To further provide insight into the sensitivity of molluscs to ADDs, AMI concentrations (exposure water and hemolymph) were determined using a novel extraction method. The Fish Plasma Model (FPM), a critical tool for prioritization assessment of pharmaceuticals with potential to cause drug target-mediated effects in fish, was then evaluated for its applicability to molluscs for the first time. Disruption of food intake (1000 ng/L) and reproductive output (500 and 1000 ng/L) were observed at particularly low hemolymph levels of AMI, whereas locomotor behaviours were unaffected. Importantly, the predicted hemolymph levels of AMI using the FPM agreed closely with the measured levels. The findings suggest that hemolymph levels of AMI may be a useful indicator of feeding and reproductive disruptions in wild population of freshwater gastropods, and confirm the applicability of the FPM to molluscs for comparative pharmaceutical hazard identification.
Collapse
Affiliation(s)
- Maurice E Imiuwa
- Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK; Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, Nigeria.
| | - Alice Baynes
- Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK
| | - Rakesh Kanda
- Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK
| | - Edwin J Routledge
- Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK.
| |
Collapse
|
3
|
Shi Y, Chen C, Wu X, Han Z, Zhang S, Chen K, Qiu X. Exposure to amitriptyline induces persistent gut damages and dysbiosis of the gut microbiota in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 260:109417. [PMID: 35872240 DOI: 10.1016/j.cbpc.2022.109417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/27/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
Amitriptyline (AMI), the most commonly prescribed tricyclic antidepressant, is widely detected in water environments. Exposure to AMI may lead to diverse adverse effects on aquatic organisms, but little is known about the effect of short-term exposure to AMI on the gut microbiota of aquatic organisms and their recovery characteristics. In the present study, adult zebrafish (Danio rerio) were exposed to AMI (0, 2.5, 10, and 40 μg/L) for seven days, and then allowed to recover in AMI-free culture water for 21 days. The exposure caused gut damages in all the AMI treated groups of zebrafish, which became more severe after recovery compared to the control group. AMI exposure also disturbed the microbiota of zebrafish guts and rearing water even after the 21-day recovery period. Furthermore, AMI exposure affected microbes involved in the substance and energy metabolic functions in zebrafish guts and tended to increase the abundance of microbial genera associated with opportunistic pathogens. In addition, the microbial predicted metabolic functions in AMI-exposed guts of zebrafish were significantly altered after the 21-day recovery period, explaining the persistent effects of short-term exposure to AMI. The results of this study suggest that acute exposure to AMI may have persistent impacts on the gut histomorphology and the gut microbiota in aquatic organisms.
Collapse
Affiliation(s)
- Yanhong Shi
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shanshuo Zhang
- Henan Division GRG Metrology and Test Co., Ltd, Zhengzhou 450001, China
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
4
|
Rix RR, Guedes RNC, Christopher Cutler G. Hormesis Dose-Response Contaminant-induced hormesis in animals. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Melin V, Salgado P, Thiam A, Henríquez A, Mansilla HD, Yáñez J, Salazar C. Study of degradation of amitriptyline antidepressant by different electrochemical advanced oxidation processes. CHEMOSPHERE 2021; 274:129683. [PMID: 33540303 DOI: 10.1016/j.chemosphere.2021.129683] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Amitriptyline (AMT) is the most widely used tricyclic antidepressant and is classified as a recalcitrant emergent contaminant because it has been detected in different sources of water. Its accumulation in water and soil represents a risk for different living creatures. To remove amitriptyline from wastewater, the Advanced Oxidation Processes (AOPs) stands up as an interesting option since generate highly oxidized species as hydroxyl radicals (OH) by environmentally friendly mechanism. In this work, the oxidation and mineralization of AMT solution have been comparatively studied by 3 Electrochemical AOPs (EAOPs) where the OH is produced by anodic oxidation of H2O (AO-H2O2), or by electro-Fenton (EF) or photoelectro-Fenton (PEF). PEF process with a BDD anode showed the best performance for degradation and mineralization of this drug due to the synergistic action of highly reactive physiosorbed BDD (OH), homogeneous OH and UVA radiation. This process achieved total degradation of AMT at 50 min of electrolysis and 95% of mineralization after 360 min of treatment with 0.5 mmol L-1 Fe2+ at 100 mA cm-2. Six aromatic intermediates for the drug mineralization were identified in short time of electrolysis by GC-MS, including a chloroaromatic by-product formed from the attack of active chlorine. Short-chain carboxylic acids like succinic, malic, oxalic and formic acid were quantified by ion-exclusion HPLC. Furthermore, the formation of NO3- ions was monitored. Finally, the organic intermediates identified by chromatographic techniques were used to propose the reaction sequence for the total mineralization of AMT.
Collapse
Affiliation(s)
- Victoria Melin
- Laboratorio de Química Verde, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción, Chile
| | - Pablo Salgado
- Laboratorio de Procesos Químicos Aplicados, Departamento de Ingeniería Civil, Facultad de Ingeniería, Universidad Católica de La Santísima Concepción, Alonso de Ribera 2850, Concepción, Chile
| | - Abdoulaye Thiam
- Programa Institucional de Fomento a La Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Adolfo Henríquez
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; Laboratorio de Investigaciones Medioambientales de Zonas Áridas, LIMZA, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - Héctor D Mansilla
- Laboratorio de Química Orgánica Ambiental, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción, Chile
| | - Jorge Yáñez
- Laboratorio de Trazas Elementales y Especiación, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción, Chile
| | - Claudio Salazar
- Laboratorio de Procesos Químicos Aplicados, Departamento de Ingeniería Civil, Facultad de Ingeniería, Universidad Católica de La Santísima Concepción, Alonso de Ribera 2850, Concepción, Chile.
| |
Collapse
|
6
|
High-Throughput Screening of Psychotropic Compounds: Impacts on Swimming Behaviours in Artemia franciscana. TOXICS 2021; 9:toxics9030064. [PMID: 33803064 PMCID: PMC8003060 DOI: 10.3390/toxics9030064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
Animal behaviour is becoming increasingly popular as an endpoint in ecotoxicology due to its increased sensitivity and speed compared to traditional endpoints. However, the widespread use of animal behaviours in environmental risk assessment is currently hindered by a lack of optimisation and standardisation of behavioural assays for model species. In this study, assays to assess swimming speed were developed for a model crustacean species, the brine shrimp Artemia franciscana. Preliminary works were performed to determine optimal arena size for this species, and weather lux used in the experiments had an impact on the animals phototactic response. Swimming speed was significantly lower in the smallest arena, whilst no difference was observed between the two larger arenas, suggesting that the small arena was limiting swimming ability. No significant difference was observed in attraction to light between high and low light intensities. Arena size had a significant impact on phototaxis behaviours. Large arenas resulted in animals spending more time in the light side of the arena compared to medium and small, irrespective of light intensity. The swimming speed assay was then used to expose specimens to a range of psychotropic compounds with varying modes of action. Results indicate that swimming speed provides a valid measure of the impacts of behaviour modulating compounds on A. franciscana. The psychotropic compounds tested varied in their impacts on animal behaviour. Fluoxetine resulted in increased swimming speed as has been found in other crustacean species, whilst oxazepam, venlafaxine and amitriptyline had no significant impacts on the behaviours measured. The results from this study suggest a simple, fast, high throughput assay for A. franciscana and gains insight on the impacts of a range of psychotropic compounds on the swimming behaviours of a model crustacean species used in ecotoxicology studies.
Collapse
|
7
|
Castillo-Zacarías C, Barocio ME, Hidalgo-Vázquez E, Sosa-Hernández JE, Parra-Arroyo L, López-Pacheco IY, Barceló D, Iqbal HNM, Parra-Saldívar R. Antidepressant drugs as emerging contaminants: Occurrence in urban and non-urban waters and analytical methods for their detection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143722. [PMID: 33221013 DOI: 10.1016/j.scitotenv.2020.143722] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 02/05/2023]
Abstract
Antidepressants are drugs with a direct action on the brain's biochemistry through their interaction with the neurotransmitters, such as dopamine, norepinephrine, and serotonin. The increasing worldwide contamination from these drugs may be witnessed through their increasing presence in the urban water cycle. Furthermore, their occurrence has been detected in non-urban water, such as rivers and oceans. Some endemic aquatic animals, such as certain fish and mollusks, have bioaccumulated different antidepressant drugs in their tissues. This problem will increase in the years to come because the present COVID-19 pandemic has increased the general worldwide occurrence of depression and anxiety, triggering the consumption of antidepressants and, consequently, their presence in the environment. This work provides information on the occurrence of the most administrated antidepressants in urban waters, wastewater treatment plants, rivers, and oceans. Furthermore, it provides an overview of the analytical approaches currently used to detect each antidepressant presented. Finally, the ecotoxicological effect of antidepressants on several in vivo models are listed. Considering the information provided in this review, there is an urgent need to test the presence of antidepressant members of the MAOI and TCA groups. Furthermore, incorporating new degradation/immobilization technologies in WWTPs will be useful to stop the increasing occurrence of these drugs in the environment.
Collapse
Affiliation(s)
| | - Mario E Barocio
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | | | - Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute of Water Research, Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Hafiz N M Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | | |
Collapse
|