1
|
Lin Z, Li M, Yan P, Zhang J, Xie H, Wu H. Constructed wetlands for wastewater treatment and reuse: Two decades of experience from China. ENVIRONMENTAL RESEARCH 2025; 279:121781. [PMID: 40335010 DOI: 10.1016/j.envres.2025.121781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/30/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
Constructed wetlands (CWs) can be used for water purification and ecological restoration through the synergistic effects of substrates, aquatic plants, and microorganisms. This study explored a bibliometric approach to quantitatively evaluate the recent research progress and applications of CWs in China by synthetically analyzing publication output characteristics, research hotspots and quantified China's unique contributions to global CW applications. The results indicated that the number of papers published in the field of CWs has shown an overall upward trend in the past two decades, and the research hotspots mainly focus on the nitrogen and phosphorus removal, microbial community. China has actively supported the investigation and application of CWs for wastewater treatment and reuse. More than 40 species of plants and over 30 types of substrates have been employed in CWs for treating different types of wastewater, such as domestic sewage, industrial effluents, river water, and drinking water. Several successful case studies of full-scale CWs have been selected and summarized to highlight the extensive application of CWs in China and provided a CW localized design framework.
Collapse
Affiliation(s)
- Zhiyi Lin
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Mingjun Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Peihao Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, PR China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao, 266247, PR China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
2
|
Donato MA, de Oliveira Souza A, Pacheco A, de Carvalho Silva L, Svenar S, Nagalli A, Passig FH, Brasil Bernardelli JK, Querne de Carvalho K. Intensifying intermittent aeration for optimizing nutrient and hormone removal in vertical-flow constructed wetlands filled with aerated concrete. CHEMOSPHERE 2025; 370:143941. [PMID: 39681191 DOI: 10.1016/j.chemosphere.2024.143941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Operational strategies have been applied in constructed wetlands to optimize the removal of nutrients and hormones that are still a concern in wastewater treatment. The strategy of intensifying intermittent aeration was investigated in two microcosm-scale vertical-flow constructed wetlands (VFCWs) planted with Eichhornia crassipes onto autoclaved aerated concrete (AC) in the removal of nutrients, estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2). CW-1 (2.4 LO2 min-1) and CW-2 (1.4 LO2 min-1) were fed with synthetic wastewater in sequencing-batch mode (cycles 48-48-72 h) and intermittently aerated for 1 h, followed by 7 h without aeration for 377 days. Combined with the intensification strategy, the use of planted free-floating macrophytes and concrete-based material (emergent) as filtering media stand out as the innovation and originality aspects of this study. Despite the hormone addition, intensifying aeration enhanced the efficiencies since CW-1 achieved the highest removals with 91% COD, 77% TN, 74% TAN, 60% nitrate, and 97% TP in Stage I (no hormone addition) and 90% COD, 80% TN, 93% TAN, 63% nitrate, and 82% TP in Stage II (with hormone addition). CW-1 achieved the highest removal efficiencies of E1 (84%), E2 (95%), and EE2 (73%). Conversely, the efficiencies decreased under the lower aeration rate (in CW-2) for all parameters. Macrophyte uptake and adsorption stood out for TN (>60.25%) and TP (>27.6%) removal as the main mechanisms in the VFCWs. The characteristics of AC favored ion exchange and precipitation, reinforcing the potential of this material as filtering media in VFCWs. Intensification of intermittent aeration combined with hormone addition diverse and riched the microbial community with the presence of Thauera, Lentimicrobium (denitrification), Candidatus Accumulibacter (phosphorus removal), Pseudomonas, Fusibacter, and Azoarcus (EE2 degradation). Intensifying intermittent aeration was an important strategy to enhance the simultaneous removal of nutrients and hormones in the VFCWs under the evaluated operational conditions.
Collapse
Affiliation(s)
- Mayra Alves Donato
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Engineering Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Adelania de Oliveira Souza
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Engineering Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Amanda Pacheco
- Federal University of Tecnhology - Paraná (UTFPR) - Environmental Sciences and Technology Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Lucas de Carvalho Silva
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Engineering Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Silvana Svenar
- Federal University of Tecnhology - Paraná (UTFPR) - Environmental Sciences and Technology Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - André Nagalli
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Fernando Hermes Passig
- Federal University of Tecnhology - Paraná (UTFPR) - Biology and Chemistry Academic Department. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Jossy Karla Brasil Bernardelli
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Engineering Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Karina Querne de Carvalho
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| |
Collapse
|
3
|
Zhao L, Zhang J, Guo Z, Hu Z, Wu H. Recycling various wastes as substrates in constructed wetlands: A review on enhancing contaminants removal and potential risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177749. [PMID: 39608263 DOI: 10.1016/j.scitotenv.2024.177749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Under the perspectives of circular economy, coupling waste management and environmental engineering to foster sustainable pollution control solutions has gained particular attention. Particularly in constructed wetlands (CWs) as a nature-based solution, recycling various wastes as substrates for enhancing the removal of various pollutants have become a recent hotspot in recent years. In this review, physicochemical properties, enhanced removal performance and mechanism of various pollutants, and potential risks of waste-derived substrates including industrial and municipal wastes, agricultural by-products, and waste synthetic substrates were summarized comprehensively. It is indicated that agricultural by-products have the best chemical oxygen demand (COD) and total nitrogen (TN) removal with the average removal efficiency of 91.23 % and 83.68 %, while industrial and municipal wastes have the best total phosphorus (TP) removal efficiency (86.70 %). The main impacts and risks of waste-derived substrates included: the secondary pollution, toxic to plants and microorganisms, and potential clogging. This review could provide theoretical basis for the future exploration and application of recycling waste as substrates in CWs.
Collapse
Affiliation(s)
- Lingyan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, PR China
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
4
|
Zhang Q, Yu X, Yang Y, Ruan J, Zou Y, Wu S, Chen F, Zhu R. Enhanced ammonia removal in tidal flow constructed wetland by incorporating steel slag: Performance, microbial community, and heavy metal release. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171333. [PMID: 38423325 DOI: 10.1016/j.scitotenv.2024.171333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Utilizing alkaline solid wastes, such as steel slag, as substrates in tidal flow constructed wetlands (TFCWs) can effectively neutralize the acidity generated by nitrification. However, the impacts of steel slag on microbial communities and the potential risk of heavy metal release remain poorly understood. To address these knowledge gaps, this study compared the performance and microbial community structure of TFCWs filled with a mixture of steel slag and zeolite (TFCW-S) to those filled with zeolite alone (TFCW-Z). TFCW-S exhibited a much higher NH4+-N removal efficiency (98.35 %) than TFCW-Z (55.26 %). Additionally, TFCW-S also achieved better TN and TP removal. The steel slag addition helped maintain the TFCW-S effluent pH at around 7.5, while the TFCW-Z effluent pH varied from 3.74 to 6.25. The nitrification and denitrification intensities in TFCW-S substrates were significantly higher than those in TFCW-Z, consistent with the observed removal performance. Moreover, steel slag did not cause excessive heavy metal release, as the effluent concentrations were below the standard limits. Microbial community analysis revealed that ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and complete ammonia-oxidizing bacteria coexisted in both TFCWs, albeit with different compositions. Furthermore, the enrichment of heterotrophic nitrification-aerobic denitrification bacteria in TFCW-S likely contributed to the high NH4+-N removal. In summary, these findings demonstrate that the combined use of steel slag and zeolite in TFCWs creates favorable pH conditions for ammonia-oxidizing microorganisms, leading to efficient ammonia removal in an environmentally friendly manner.
Collapse
Affiliation(s)
- Quan Zhang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Xingyu Yu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Yongqiang Yang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China.
| | - Jingjun Ruan
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Yuhuan Zou
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Shijun Wu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| | - Fanrong Chen
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| |
Collapse
|
5
|
Silva LDC, Bernardelli JKB, Souza ADO, Lafay CBB, Nagalli A, Passig FH, Kreutz C, Carvalho KQD. Biodegradation and sorption of nutrients and endocrine disruptors in a novel concrete-based substrate in vertical-flow constructed wetlands. CHEMOSPHERE 2024; 346:140531. [PMID: 37918529 DOI: 10.1016/j.chemosphere.2023.140531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Removing phosphorus and endocrine-disruptors (EDC) is still challenging for low-cost sewage treatment systems. This study investigated the efficiency of three vertical-flow constructed wetlands (VFCW) vegetated with Eichhornia crassipes onto red clay (CW-RC), autoclaved aerated concrete (CW-AC), and composite from the chemical activation of autoclaved aerated concrete with white cement (CW-AAC) in the removal of organic matter, nutrients, and estrone, 17β-estradiol, and 17α-ethinylestradiol. The novelty aspect of this study is related to selecting these clay and cementitious-based materials in removing endocrine disruptors and nutrients in VFCW. The subsurface VFCW were operated in sequencing-batch mode (cycles of 48-48-72 h), treating synthetic wastewater for 308 days. The operation consisted of Stages I and II, different by adding EDC in Stage II. The presence of EDC increased the competition for dissolved oxygen (DO) and reduced the active sites available for adsorption, diminishing the removal efficiencies of TKN and TAN and total phosphorus in the systems. CW-RC showed a significant increase in COD removal from 65% to 91%, while CW-AC and CW-AAC maintained stable COD removal (84%-82% and 78%-81%, respectively). Overall, the substrates proved effective in removing EDC, with CW-AC and CW-AAC achieving >60% of removal. Bacteria Candidatus Brocadia and Candidatus Jettenia, responsible for carrying out the Anammox process, were identified in assessing the microbial community structure. According to the mass balance analysis, adsorption is the main mechanism for removing TP in CW-AC and CW-AAC, while other losses were predominant in CW-RC. Conversely, for TN removal, the adsorption is more representative in CW-RC, and the different metabolic routes of microorganisms, biofilm assimilation, and partial ammonia volatilization in CW-AC and CW-AAC. The results suggest that the composite AAC is the most suitable material for enhancing the simultaneous removal of organic matter, nutrients, and EDC in VFCW under the evaluated operational conditions.
Collapse
Affiliation(s)
- Lucas de Carvalho Silva
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Jossy Karla Brasil Bernardelli
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Adelania de Oliveira Souza
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Cíntia Boeira Batista Lafay
- Federal University of Technology - Paraná (UTFPR), Chemistry Academic Department. Via do Conhecimento, s/n - Km 01, Fraron, 85503-390. Pato Branco, Paraná, Brazil.
| | - André Nagalli
- Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Fernando Hermes Passig
- Federal University of Technology - Paraná (UTFPR), Chemistry and Biology Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Cristiane Kreutz
- Federal University of Technology - Paraná (UTFPR), Environmental Academic Department, Rosalina Maria dos Santos St., 1233, 87301-899, Campo Mourão, Paraná, Brazil.
| | - Karina Querne de Carvalho
- Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| |
Collapse
|
6
|
Xiao J, Lin G, Cao Z, Chu S, Cui L, Yang Y, Wu X. A shallow constructed wetland combining porous filter material and Rotala rotundifolia for advanced treatment of municipal sewage at low HRT. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27593-27602. [PMID: 36383319 DOI: 10.1007/s11356-022-24111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Water scarcity is a worldwide problem. Recycled municipal wastewater is considered a useful alternative to the conventional types of water resources. In this study, a shallow constructed wetland (SCW) with porous filter material and Rotala rotundifolia was used for advanced municipal sewage treatment. The wetland without plant was set as the control (SCW-C). The pollutant removal performance of the system at different hydraulic retention times (HRTs) was investigated. The diversity of the microbial community was analyzed, and the fate of nutrients, mainly N and P, in the system was discussed. Results showed that SCW was efficient in pollutant removal. Effluent concentrations of chemical oxygen demand (COD), total phosphorus (TP), and ammonium nitrogen (NH4+-N) were 15.0-23.6, 0.19-0.28, and 0.83-1.16 mg/L, separately, with average removal efficiencies of 61.2%, 46.3%, and 88.1% at HRT 18 h, which met the requirements of type [Formula: see text] water set by the environmental quality standards for surface water in China. The richness and evenness of the bacterial community were significantly higher in the plant-rooted SCW. They increased along with the system. The dominant genera in the system were phosphate-solubilizing bacteria, nitrifying bacteria, and denitrifying bacteria. The P in the influent mainly flowed to the substrate and plant. At the same time, most N was removed by nitrification and denitrification. These findings suggested that the SCW could remove pollutants from the municipal sewage effluent and meet the standard requirement at low HRT.
Collapse
Affiliation(s)
- Jibo Xiao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Guo Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Zhuangzhuang Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Shuyi Chu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China.
- Wenzhou Vocational College of Science and Technology, Wenzhou, 325000, China.
| | - Lingzhou Cui
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Yunlong Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Xiangting Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
7
|
Zou Y, Yang Y, Wu S, Chen F, Zhu R. Effect of steel slag on ammonia removal and ammonia-oxidizing microorganisms in zeolite-based tidal flow constructed wetlands. CHEMOSPHERE 2022; 309:136727. [PMID: 36209854 DOI: 10.1016/j.chemosphere.2022.136727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/07/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The ammonia removal performance of tidal flow constructed wetlands (TFCWs) requires to be improved under high hydraulic loading rates (HLRs). The pH decrease caused by nitrification may adversely affect the NH4+-N removal and ammonia-oxidizing microorganisms (AOMs) of TFCWs. Herein, TFCWs with zeolite (TFCW_Z) and a mixture of zeolite and steel slag (TFCW_S) were built to investigate the influence of steel slag on NH4+-N removal and AOMs. Both TFCWs were operated under short flooding/drying (F/D) cycles and high HLRs (3.13 and 4.69 m3/(m2 d)). The results revealed that a neutral effluent pH (6.98-7.82) was achieved in TFCW_S owing to the CaO dissolution of steel slag. The NH4+-N removal efficiencies in TFCW_S (91.2 ± 5.1%) were much higher than those in TFCW_Z (73.2 ± 7.1%). Total nitrogen (TN) removal was poor in both TFCWs mainly due to the low influent COD/TN. Phosphorus removal in TFCW_S was unsatisfactory because of the short hydraulic retention time. The addition of steel slag stimulated the flourishing AOMs, including Nitrosomonas (ammonia-oxidizing bacteria, AOB), Candidatus_Nitrocosmicus (ammonia-oxidizing archaea, AOA), and comammox Nitrospira, which may be responsible for the better ammonia removal performance in TFCW_S. PICRUSt2 showed that steel slag also enriched the relative abundance of functional genes involved in nitrification (amoCAB, hao, and nxrAB) but inhibited genes related to denitrification (nirK, norB, and nosZ). Quantitative polymerase chain reaction (qPCR) revealed that complete AOB (CAOB) and AOB contributed more to the amoA genes in TFCW_S and TFCW_Z, respectively. Therefore, this study revealed that the dominant AOMs could be significantly changed in zeolite-based TFCW by adding steel slag to regulate the pH in situ, resulting in a more efficient NH4+-N removal performance.
Collapse
Affiliation(s)
- Yuhuan Zou
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, Guangzhou, 510640, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yongqiang Yang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, Guangzhou, 510640, China.
| | - Shijun Wu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, Guangzhou, 510640, China
| | - Fanrong Chen
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, Guangzhou, 510640, China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, Guangzhou, 510640, China
| |
Collapse
|
8
|
Nitrogen and Phosphorus Removal Efficiency and Denitrification Kinetics of Different Substrates in Constructed Wetland. WATER 2022. [DOI: 10.3390/w14111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Constructed wetlands (CWs) are generally used for wastewater treatment and removing nitrogen and phosphorus. However, the treatment efficiency of CWs is limited due to the poor performance of various substrates. To find appropriate substrates of CWs for micro-polluted water treatment, zeolite, quartz sand, bio-ceramsite, porous filter, and palygorskite self-assembled composite material (PSM) were used as filtering media to treat slightly polluted water with the aid of autotrophic denitrifying bacteria. PSM exhibited the most remarkable nitrogen and phosphorus removal performance among these substrates. The average removal efficiencies of ammonia nitrogen, total nitrogen, and total phosphorus of PSM were 66.4%, 58.1%, and 85%, respectively. First-order continuous stirred-tank reactor (first-order-CSTR) and Monod continuous stirred-tank reactor (Monod-CSTR) models were established to investigate the kinetic behavior of denitrification nitrogen removal processes using different substrates. Monod-CSTR model was proven to be an accurate model that could simulate nitrate nitrogen removal performance in vertical flow constructed wetland (VFCWs). Moreover, PSM demonstrated significant pollutant removal capacity with the kinetics coefficient of 2.0021 g/m2 d. Hence, PSM can be considered as a promising new type of substrate for micro-polluted wastewater treatment, and Monod-CSTR model can be employed to simulate denitrification processes.
Collapse
|
9
|
Wang Y, Shang Z, Lan W, Liang S, Kang X, Hu Z. Optimization of nutrient removal performance of magnesia-containing constructed wetlands: a microcosm study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58583-58591. [PMID: 34120283 DOI: 10.1007/s11356-021-14785-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Recently, magnesia has drawn much attention for enhancing phosphorus (P) removal of constructed wetlands. However, the poor nitrogen (N) removal efficiency of magnesia-containing constructed wetlands (Mg-CWs) inherently caused by magnesia impedes its application. In this study, peat and intermittent aeration were applied to enhance N removal in a Mg-CW, identified as P-CW and A-CW, respectively. A high TP removal rate (around 90%) was achieved in all CW, and the TN removal rate in the P-CW was 91.05% higher than that in the Mg-CW, which was mainly because the carbon source provided by the peat directly promoted the growth and metabolism of microorganisms and plants. Higher fresh weight of plants was obtained in P-CW (64.94 ± 5.78 g), compared with A-CW (35.88 ± 15.25 g) and Mg-CW (46.25 ± 18.88 g), accomplished by stronger tolerance to high pH (>10). The microbial abundance (16S rRNA) in the P-CW was 15.6 and 8.12 times higher than that of Mg-CW and A-CW, respectively, resulting in lower global warming potential. Tanking all factors into consideration, addition of peat could be an effective method to optimize the nutrient removal performance of Mg-CW.
Collapse
Affiliation(s)
- Yuru Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China
| | - Zhenxin Shang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China
| | - Wei Lan
- National Engineering Laboratory For Lake Pollution Control and Ecological Restoration, Institute of Lake Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China
| | - Xinsheng Kang
- Shandong Academy of Environmental Science CO., LTD., Jinan, 250013, Shandong, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China.
| |
Collapse
|
10
|
Bai S, Qin L, Liu L, Gao X, Ding Y, Li Y. Effect of substrate types on contaminant removals, electrochemical characteristics and microbial community in vertical flow constructed wetlands for treatment of urban sewage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111682. [PMID: 33243625 DOI: 10.1016/j.jenvman.2020.111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/27/2020] [Accepted: 11/14/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this study was to investigate the influence of substrates (quartz sand and coke) on the removal of pollutants (COD, NH4+-N and TP), electrochemical characteristics and microbial communities of vertical flow constructed wetlands (VFCW) under high pollutant loads. During operation, the removal rates of COD, NH4+-N and TP by VFCW-C (coke as substrate) were higher than that of VFCW-Q (quartz sand as substrate) by 9.73-19.41%, 5.03%-13.15% and 8.83%-14.58%, respectively. And the resistances of the VFCW-Q and VFCW-C were increased by 1228.9 Ω and 38.3 Ω, while their potentials were dropped from 182.4 mV to 377.9 mV-85.6 mV and 222.0 mV, respectively. The dominant bacteria at the bottoms of VFCW-Q and VFCW-C were individually aerobic denitrifying bacteria (ADNB; 14.98%)/ammonia oxidizing bacteria (AOB; 5.73%) and organics aerobic degrading bacteria (OADB; 12.48%)/ammonia oxidizing bacteria (AOB; 7.24%), while the predominant bacteria at their tops were separately ADNB (11.36%)/OADB (10.52%)/AOB (4.69%) and ADNB (15.09%)/AOB (8.86%) and OADB (3.20%) The removal of pollutants by VFCW-Q and VFCW-C may be mainly attributed to substrate adsorption and microbial degradation.
Collapse
Affiliation(s)
- Shaoyuan Bai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Lanqian Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Liheng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
| | - Xutao Gao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yanli Ding
- College of Earth Science, Guilin University of Technology, Guilin, 541004, China
| | - Yanhong Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
11
|
Wang J, Gu Y, Wang H, Li Z. Investigation on the treatment effect of slope wetland on pollutants under different hydraulic retention times. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9107-9119. [PMID: 33131039 DOI: 10.1007/s11356-020-11292-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
This work was aimed at investigating the feasibility of the slope wetland system (SWs) for improving the polluted river water. According to the characteristics of polluted river water with different hydraulic retention time (HRT) changes, a field simulation device was set up. In this experiment, a SWs simulation device was set up to study pollutant removal of SWs under different hydraulic conditions. It was found that the effect of mixed fillers (zeolite and ceramsite) as the bed was better than that of the gravel fillers as the bed. The improvement of each treatment index was about 5% (P < 0.05). When HRT = 5 days, the removal rate of chemical oxygen demand (COD) was 28.02%, total nitrogen (TN) was 32.99%, ammonia nitrogen (NH3-N) was 32.49%, and total phosphorus (TP) was 38.15%. At the same time, it was found that the characteristic moderate extension of HRT is conducive to the removal of pollutants in SWs. The growth of plants in the environment of the gravel matrix was worse than that of mixed fillers (zeolite and ceramsite). It was found that physical adsorption was the main form of pollution removal on the SWs fillers by Fourier infrared spectrum (FTIR) analysis. Based on the analysis of the microbial community in the packing of the device, it is indicated that the enrichment of microorganisms appeared during the experiment, forming the dominant bacteria against the polluted river water.
Collapse
Affiliation(s)
- Jia Wang
- Department of Institute of Water Environment, Beijing Institute of Water Science and Technology, Beijing, 100048, China
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Yonggang Gu
- Department of Institute of Water Environment, Beijing Institute of Water Science and Technology, Beijing, 100048, China.
| | - Hao Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, 063009, China.
| | - Zhaoxin Li
- Department of Institute of Water Environment, Beijing Institute of Water Science and Technology, Beijing, 100048, China
| |
Collapse
|
12
|
Shen S, Li X, Cheng F, Zha X, Lu X. Review: recent developments of substrates for nitrogen and phosphorus removal in CWs treating municipal wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29837-29855. [PMID: 32472508 DOI: 10.1007/s11356-020-08808-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Substrates are the main factor influencing the performance of constructed wetlands (CWs), and especially play an important role in enhancing the removal of nitrogen and phosphorus from CWs. In the recent 10 years, based on the investigation of emerged substrates used in CWs, this paper summarizes the removal efficiency and mechanism of nitrogen and phosphorus by a single substrate in detail. The simultaneous removal efficiency of nitrogen and phosphorus by different combined substrates is emphatically analyzed. Among them, the reuse of industrial and agricultural wastes as water treatment substrates is recommended due to the efficient pollutant removal efficiency and the principle of waste minimization, also more studies on the environmental impact and risk assessment of the application, and the subsequent disposal of saturated substrates are needed. This work serves as a basis for future screening and development of substrates utilized in CWs, which is helpful to enhance the synchronous removal of nitrogen and phosphorus, as well as improve the sustainability of substrates and CWs. Moreover, further studies on the interaction between different types of substrates in the wetland system are desperately needed.
Collapse
Affiliation(s)
- Shuting Shen
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Xiang Li
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Fangkui Cheng
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Xiao Zha
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Xiwu Lu
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China.
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China.
| |
Collapse
|
13
|
Yuan Y, Yang B, Wang H, Lai X, Li F, Salam MMA, Pan F, Zhao Y. The simultaneous antibiotics and nitrogen removal in vertical flow constructed wetlands: Effects of substrates and responses of microbial functions. BIORESOURCE TECHNOLOGY 2020; 310:123419. [PMID: 32361200 DOI: 10.1016/j.biortech.2020.123419] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
A vertical flow constructed wetland (VFCW) packed with the different substrates was designed to remediate the antibiotics in the wastewater. Zeolite (CW-Z) paralleled with Manganese (Mn) ore (CW-M) and biochar (CW-C) were used to enhance the synchronous removal of ciprofloxacin hydrochloride (CIPH), sulfamethazine (SMZ) and nitrogen (N) from the wastewater. The result indicated that CW-M had a significant potential to remove CIPH (93%), SMZ (69%), TN (71%), NH4+-N (94%) and NO3--N (94%) across all the treatments. The abundance of amoA, nirK and nirS genes are dramatically higher in CW-M and CW-C, while CW-C inhibited the production of quinolone resistance genes. Results showed that different substrates could affect the microbial diversity and structure. The addition of Mn ore to the water led to an improved abundance of nitrogen-related phyla. Overall, Mn ore has a considerable potential to simultaneously remove antibiotics and N in VFCWs.
Collapse
Affiliation(s)
- Yingrui Yuan
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Baoshan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Hui Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Xiaoshuang Lai
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Feng Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Mir Md Abdus Salam
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80100 Joensuu, Finland
| | - Fuxia Pan
- Jinan Environmental Research Academy, Jinan, Shandong 250102, China
| | - Yuqiang Zhao
- Jinan Environmental Research Academy, Jinan, Shandong 250102, China
| |
Collapse
|
14
|
Guo X, Cui X, Li H. Effects of fillers combined with biosorbents on nutrient and heavy metal removal from biogas slurry in constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134788. [PMID: 31733500 DOI: 10.1016/j.scitotenv.2019.134788] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
The performance of fillers (biochar and zeolite) and their combinations with biosorbents (compound microbial agent and chlorella) in nutrients and heavy metals removal from biogas slurry in constructed wetlands (CWs) planted water spinach (Ipomoea aquatica) and plant uptake of heavy metals was investigated. The results demonstrated that the removal rate of nutrients in CWs was all above 60%. COD removal efficiencies were not significantly affected by fillers and biosorbents, all above 80%. The removal rates of TN and NH4+-N were the highest when the two fillers and two biosorbents were added, and the combination of biochar and chlorella presented the optimal removal effect on TP. The efficiency of removing heavy metals from biogas slurry in CWs was As > Zn > Cu, and their removal rates were 35.38%-83.89%, 8.15%-23.69% and 0.32%-0.88%, respectively. The removal efficiency of As by the combination of biochar and composite microbial agent was high. The combination of the two fillers and two biosorbents had the best effect on reducing Cu and Zn enrichment in the aboveground part of water spinach in each treatment, while biochar alone had the best effect on reducing As enrichment in the aboveground and underground parts of water spinach. This study can provide a basis for the application of fillers and biosorbents in the treatment of biogas slurry in livestock and poultry farms in wetlands.
Collapse
Affiliation(s)
- Xiongfei Guo
- College of Resources and Environmental Sciences, South China Agricultural University, Guangzhou 510642, PR China; College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, PR China.
| | - Xingyi Cui
- College of Resources and Environmental Sciences, South China Agricultural University, Guangzhou 510642, PR China.
| | - Huashou Li
- College of Resources and Environmental Sciences, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|