1
|
Das R, Mohanty P, Dash PP, Mishra S, Bishoyi AK, Mishra L, Prusty L, Behera DP, Dubey D, Mishra M, Sahoo H, Khan MS, Sethi SK, Jali BR. Unveiling the interaction, cytotoxicity and antibacterial potential of pyridine derivatives: an experimental and theoretical approach with bovine serum albumin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4449-4466. [PMID: 39485531 DOI: 10.1007/s00210-024-03541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/12/2024] [Indexed: 11/03/2024]
Abstract
The binding interactions between bovine serum albumin (BSA) and three pyridine derivatives, i.e., 2-(5-bromopyridin-3-yl) acetic acid (L1), 3-bromo-5-nitropyridine (L2) and 2-chloro-4-nitropyridine (L3), have been carried out using UV-Vis and fluorescence spectroscopic methods. Fluorescence intensity quenching is observed by adding L2 and L3 to the BSA solution. The quenched fluorescence emission is due to the static nature. An isothermal titration calorimetry (ITC) experiment shows the binding ability of L1 with BSA. The binding constants are found to be 7.23 ± 0.32 × 105 M-1 for L1. The thermodynamic parameters were calculated from ITC measurements (i.e., ∆H = -2.78 ± 0.08 kcal/mol, ∆G = -5.65 ± 0.25 kcal/mol, and -T∆S = -2.87 ± 0.11 kcal/mol), which indicated that the protein-ligand complex formation between L1 and BSA is mainly due to the hydrogen bonds and van der Waals interactions. Cyclic voltammetry (CV) and structure activity and relationship (SAR) studies have been carried out to establish the relationship between ligands and proteins. Additionally, we conducted an antibacterial assay with gram-positive Staphylococcus aureus, Enterococcus faecalis, and negative bacterial strains Acinetobacter baumannii and Escherichia coli against L1, L2, and L3, aiming to address the challenges posed by the co-existence of multidrug-resistant bacteria. Finally, drosophila is used to test the cytotoxicity of ligands L1, L2, and L3's in vitro.
Collapse
Affiliation(s)
- Rosalin Das
- School of Biotechnology, Gangadhar Meher University, Sambalpur, Odisha, 768001, India
| | - Patitapaban Mohanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, 768018, India
| | - Pragyan P Dash
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, 768018, India
| | - Swagatika Mishra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, 768018, India
| | - Ajit K Bishoyi
- Department of Clinical Hematology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, Odisha, 751003, India
| | - Lokanath Mishra
- Department of Life Science, National Institute of Technology, Rourkela, 769008, India
| | - Laxmipriya Prusty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India
| | - Devi P Behera
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India
| | - Debasmita Dubey
- Medical Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, Odisha, 751003, India
| | - Monalisa Mishra
- Department of Life Science, National Institute of Technology, Rourkela, 769008, India
| | - Harekrushna Sahoo
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India
| | - Mohd S Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Santosh K Sethi
- School of Biotechnology, Gangadhar Meher University, Sambalpur, Odisha, 768001, India.
| | - Bigyan R Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, 768018, India.
| |
Collapse
|
2
|
Sahu S, Dash K, Mishra M. Common salt (NaCl) causes developmental, behavioral, and physiological defects in Drosophila melanogaster. Nutr Neurosci 2025:1-19. [PMID: 39760749 DOI: 10.1080/1028415x.2024.2441677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
PURPOSE The incidence of obesity has surged to pandemic levels in recent decades. Approximately 1.89 million obesity are linked to excessive salt consumption. This study aims to check the toxicity of salt at different concentrations using an invertebrate model organism Drosophila melanogaster. METHODS Drosophila food was mixed with different salt concentrations (50, 200, 400, 800 µM). The toxicity of salt in third instar larvae was checked via different experiments such as trypan blue assay, crawling assay, and other histological staining was done to check the deposition of lipid droplets and amount of reactive oxygen species. Food intake analysis was performed to check the feeding rate, and body weight was also calculated to check the obesity index. Several behavioral assays are also performed in adult flies. RESULTS Most significant abnormalities were seen at 50 and 200 µM concentrations. Feeding rate increased up to 60%, body weight was increased up to 12% in larvae, and 27% in adult at 200 µM concentration. Approximately 60% larvae and 58% adult flies had defective response to extreme heat. 28% larvae and 38% adult flies were not responding to cold temperature. 55% flies had a defective phototaxis behavior and 40% of them showed positive geotaxis at those range. Salt stress leads to the buildup of free radicals, resulting in DNA damage in both the gut and hemolymph. FINDINGS Most toxic consequences are observed at the lower concentration range as the feeding rate was higher. Flies show aversive response to feed on the higher concentration of salt.
Collapse
Affiliation(s)
- Swetapadma Sahu
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India
| | - Kalpanarani Dash
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India
| |
Collapse
|
3
|
Flasz B, Tarnawska M, Kędziorski A, Napora-Rutkowski Ł, Szczygieł J, Gajda Ł, Nowak N, Augustyniak M. Ascorbic Acid and Graphene Oxide Exposure in the Model Organism Acheta domesticus Can Change the Reproduction Potential. Molecules 2024; 29:4594. [PMID: 39407524 PMCID: PMC11478226 DOI: 10.3390/molecules29194594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The use of nanoparticles in the industry carries the risk of their release into the environment. Based on the presumption that the primary graphene oxide (GO) toxicity mechanism is reactive oxygen species production in the cell, the question arises as to whether well-known antioxidants can protect the cell or significantly reduce the effects of GO. This study focused on the possible remedial effect of vitamin C in Acheta domesticus intoxicated with GO for whole lives. The reproduction potential was measured at the level of Vitellogenin (Vg) gene expression, Vg protein expression, hatching success, and share of nutrition in the developing egg. There was no simple relationship between the Vg gene's expression and the Vg protein content. Despite fewer eggs laid in the vitamin C groups, hatching success was high, and egg composition did not differ significantly. The exceptions were GO20 and GO20 + Vit. C groups, with a shift in the lipid content in the egg. Most likely, ascorbic acid impacts the level of Vg gene expression but does not affect the production of Vg protein or the quality of eggs laid. Low GO concentration in food did not cause adverse effects, but the relationship between GO toxicity and its concentration should be investigated more thoroughly.
Collapse
Affiliation(s)
- Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| | - Łukasz Napora-Rutkowski
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, 43-520 Zaborze, Poland; (Ł.N.-R.); (J.S.)
| | - Joanna Szczygieł
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, 43-520 Zaborze, Poland; (Ł.N.-R.); (J.S.)
| | - Łukasz Gajda
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| | - Natalia Nowak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| |
Collapse
|
4
|
Turna Demir F, Demir E. In vivo evaluation of the neurogenotoxic effects of exposure to validamycin A in neuroblasts of Drosophila melanogaster larval brain. J Appl Toxicol 2024; 44:355-370. [PMID: 37735745 DOI: 10.1002/jat.4547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023]
Abstract
Agriculture commonly utilizes crop protection products to tackle infestations from fungi, parasites, insects, and weeds. Validamycin A, an inhibitor of trehalase, possesses antibiotic and antifungal attributes. Epidemiological evidence has led to concerns regarding a potential link between pesticide usage and neurodegenerative diseases. The fruit fly, Drosophila melanogaster, has been recognized as a reliable model for genetic research due to its significant genetic similarities with mammals. Here, we propose to use D. melanogaster as an effective in vivo model system to investigate the genotoxic risks associated with exposure to validamycin A. In this study, we performed a neurotoxic evaluation of validamycin A in D. melanogaster larvae. Several endpoints were evaluated, including toxicity, intracellular oxidative stress (reactive oxygen species), intestinal damage, larval behavior (crawling behavior, light/dark sensitivity assay, and temperature sensitivity assay), locomotor (climbing) behavior, and neurogenotoxic effects (impaired DNA via Comet assay, enhanced by Endo III and formamidopyrimidine DNA glycosylase [FPG]). The results showed that exposure to validamycin A, especially at higher doses (1 and 2.5 mM), induced DNA impairment in neuroblasts as observed by Comet assay. Both larvae and adults exhibited behavioral changes and produced reactive oxygen species. Most importantly, this research represents a pioneering effort to report neurogenotoxicity data specifically in Drosophila larval neuroblasts, thus underscoring the importance of this species as a testing model in exploring the biological impacts of validamycin A. The in vivo findings from the experiments are a valuable and novel addition to the existing validamycin A neurogenotoxicity database.
Collapse
Affiliation(s)
- Fatma Turna Demir
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Antalya, Turkey
| | - Eşref Demir
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Antalya, Turkey
| |
Collapse
|
5
|
Chauhan S, Naik S, Kumar R, Ruokolainen J, Kesari KK, Mishra M, Gupta PK. In Vivo Toxicological Analysis of the ZnFe 2O 4@poly( tBGE- alt-PA) Nanocomposite: A Study on Fruit Fly. ACS OMEGA 2024; 9:6549-6555. [PMID: 38371810 PMCID: PMC10870305 DOI: 10.1021/acsomega.3c07111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 02/20/2024]
Abstract
Recently, the use of hybrid nanomaterials (NMs)/nanocomposites has widely increased for the health, energy, and environment sectors due to their improved physicochemical properties and reduced aggregation behavior. However, prior to their use in such sectors, it is mandatory to study their toxicological behavior in detail. In the present study, a ZnFe2O4@poly(tBGE-alt-PA) nanocomposite is tested to study its toxicological effects on a fruit fly model. This nanocomposite was synthesized earlier by our group and physicochemically characterized using different techniques. In this study, various neurological, developmental, genotoxic, and morphological tests were carried out to investigate the toxic effects of nanocomposite on Drosophila melanogaster. As a result, an abnormal crawling speed of third instar larvae and a change in the climbing behavior of treated flies were observed, suggesting a neurological disorder in the fruit flies. DAPI and DCFH-DA dyes analyzed the abnormalities in the larva's gut of fruit flies. Furthermore, the deformities were also seen in the wings and eyes of the treated flies. These obtained results suggested that the ZnFe2O4@poly(tBGE-alt-PA) nanocomposite is toxic to fruit flies. Moreover, this is essential to analyze the toxicity of this hybrid NM again in a rodent model in the future.
Collapse
Affiliation(s)
- Shaily Chauhan
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh , India
- Centre
for Development of Biomaterials, Sharda
University, Greater
Noida 201310, Uttar Pradesh , India
| | - Seekha Naik
- Department
of Life Science, National Institute of Technology, Rourkela 769008, Odisha , India
| | - Rohit Kumar
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh , India
- Centre
for Development of Biomaterials, Sharda
University, Greater
Noida 201310, Uttar Pradesh , India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, Espoo 02150, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, Espoo 02150, Finland
- Research
and Development Cell, Lovely Professional
University, Phagwara 144411, Punjab , India
| | - Monalisa Mishra
- Department
of Life Science, National Institute of Technology, Rourkela 769008, Odisha , India
| | - Piyush Kumar Gupta
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh , India
- Centre
for Development of Biomaterials, Sharda
University, Greater
Noida 201310, Uttar Pradesh , India
- Department
of Biotechnology, Graphic Era (Deemed to
Be University), Dehradun 248002, Uttarakhand, India
| |
Collapse
|
6
|
Balakrishnan B, Sarojini BK, Kodoth AK, Dayananda BS, Venkatesha R. Fabrication and characterization of tamarind seed gum based novel hydrogel for the targeted delivery of omeprazole magnesium. Int J Biol Macromol 2024; 258:128758. [PMID: 38103480 DOI: 10.1016/j.ijbiomac.2023.128758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
The tamarind seed gum based novel hydrogel was fabricated by varying concentration of polymer, monomer and crosslinker for the targeted delivery of omeprazole magnesium at stomach pH of 1.5. The free radical graft copolymerization of 2-acrylamido-2-methyl propane sulfonic acid with tamarind seed gum backbone resulted in hydrogel. The formation of sulfonic acid pendant groups in hydrogel was observed by the existence of an infrared absorption band at 1152 cm-1 for SO group. The conversion to semicrystalline nature on incorporation of drug evidenced by powder X-ray diffraction studies with peaks at 2θ = 20.4° 31.5° and 52.2°. The scanning electron microscopy images showed bigger voids which narrowed down for drug loaded matrix, supported by the presence of a peak for magnesium in the energy dispersive X-ray spectroscopy. The greatest swelling was observed at pH 7 with second-order rate constant 1.5371 (g/g)/min and drug release was found to be 97.85 ± 1 % over 1200 min at pH 1.5. The drug release transport was found combination of diffusion and erosion of polymer chain to be super case II diffusion and Hill equation model was good fit. The hydrogel drug conjugate found to be non-toxic at tested concentrations (17 mg/50 mg) on in-vivo testing in Drosophila model.
Collapse
Affiliation(s)
- Bhavya Balakrishnan
- Department of Industrial Chemistry, Mangalore University, Mangalagangotri 574199, Karnataka, India
| | | | - Arun Krishna Kodoth
- Department of Industrial Chemistry, Mangalore University, Mangalagangotri 574199, Karnataka, India
| | | | - Ranjitha Venkatesha
- Department of Chemistry, Mangalore University, Mangalagangotri 574199, Karnataka, India
| |
Collapse
|
7
|
Behera S, Dash PP, Bishoyi AK, Dash K, Mohanty P, Sahoo CR, Padhy RN, Mishra M, Ghosh BN, Sahoo H, Jali BR. Protein interactions, molecular docking, antimicrobial and antifungal studies of terpyridine ligands. J Biomol Struct Dyn 2023; 41:11274-11285. [PMID: 36562209 DOI: 10.1080/07391102.2022.2161012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Resistance to antibiotics/antibacterials/antifungals in pathogenic microbes has been developing over the past few decades and has recently become a commonplace public-health peril. Thus, alternative nontoxic potent antibiotic agents are covertly needed to control antibiotic-resistant outbreaks. In an effort to combat the challenges posed by the co-occurrence of multidrug resistance, two terpyridine ligands 4'-(4-N,N'-dimethylaminophenyl)-2,2':6',2″-terpyridine (L1) and 4'-(4-tolyl)-2,2':6',2″-terpyridine (L2) have been designed, prepared and confirmed their structure by spectral studies. Thereafter, antimicrobial assay was performed against gram positive and negative bacterial strains along with fungal strains. Both compounds L1 and L2 exhibited remarkable inhibitory activities against bacteria, Escherichia coli and Staphylococcus aureus at MIC values 6.25 and 3.125 µg/ml, respectively. In addition, in silico molecular docking studies were ascertained with bacterial DNA gyrase and fungal demethylase. Furthermore, both L1 and L2 could bind Bovine Serum Albumin (BSA) protein and binding interaction has been studied with the help of UV-Visible and fluorescence spectroscopy. While fluorescence of BSA unperturbed in the presence of L2, an addition of L1 to the solution of BSA resulted significant quenching. The binding constant calculations at different temperature confirmed that the fluorescence quenching between BSA and L1 is predominantly static in nature. The toxicity of L1 and L2 was checked using Drosophila melanogaster. The toxicity analysis suggest both the dyes are non-cytotoxic in nature.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Behera
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Odisha, India
| | - Pragyan P Dash
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Odisha, India
| | - Ajit K Bishoyi
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, Odisha, India
| | - K Dash
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - P Mohanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Odisha, India
| | - Chita R Sahoo
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, Odisha, India
| | - Rabindra N Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, Odisha, India
| | - M Mishra
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - B N Ghosh
- Department of Chemistry, National Institute of Technology, Silchar, India
| | - H Sahoo
- Department of Chemistry, National Institute of Technology, Rourkela, India
| | - B R Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Odisha, India
| |
Collapse
|
8
|
Sun A, Liu H, Sun M, Yang W, Liu J, Lin Y, Shi X, Sun J, Liu L. Emerging nanotherapeutic strategies targeting gut-X axis against diseases. Biomed Pharmacother 2023; 167:115577. [PMID: 37757494 DOI: 10.1016/j.biopha.2023.115577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Gut microbiota can coordinate with different tissues and organs to maintain human health, which derives the concept of the gut-X axis. Conversely, the dysbiosis of gut microbiota leads to the occurrence and development of various diseases, such as neurological diseases, liver diseases, and even cancers. Therefore, the modulation of gut microbiota offers new opportunities in the field of medicines. Antibiotics, probiotics or other treatments might restore unbalanced gut microbiota, which effects do not match what people have expected. Recently, nanomedicines with the high targeting ability and reduced toxicity make them an appreciative choice for relieving disease through targeting gut-X axis. Considering this paradigm-setting trend, the current review summarizes the advancements in gut microbiota and its related nanomedicines. Specifically, this article introduces the immunological effects of gut microbiota, summarizes the gut-X axis-associated diseases, and highlights the nanotherapeutics-mediated treatment via remolding the gut-X axis. Moreover, this review also discusses the challenges in studies related to nanomedicines targeting the gut microbiota and offers the future perspective, thereby aiming at charting a course toward clinic.
Collapse
Affiliation(s)
- Ao Sun
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hongyu Liu
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, Liaoning Province, China; Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, China Medical University, Ministry of Education, Shenyang, Liaoning Province, China
| | - Mengchi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, PR China
| | - Weiguang Yang
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jiaxin Liu
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yi Lin
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, PR China.
| | - Linlin Liu
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
9
|
Yang C, Merlin D. Challenges to Safe Nanomedicine Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1171. [PMID: 37049268 PMCID: PMC10096857 DOI: 10.3390/nano13071171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Nanotechnology has the potential to revolutionize the field of drug treatment by enabling the targeted delivery and controlled release of drugs at a cellular level [...].
Collapse
Affiliation(s)
- Chunhua Yang
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA;
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Didier Merlin
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA;
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| |
Collapse
|
10
|
Demir E, Kansız S, Doğan M, Topel Ö, Akkoyunlu G, Kandur MY, Turna Demir F. Hazard Assessment of the Effects of Acute and Chronic Exposure to Permethrin, Copper Hydroxide, Acephate, and Validamycin Nanopesticides on the Physiology of Drosophila: Novel Insights into the Cellular Internalization and Biological Effects. Int J Mol Sci 2022; 23:ijms23169121. [PMID: 36012388 PMCID: PMC9408976 DOI: 10.3390/ijms23169121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/23/2022] Open
Abstract
New insights into the interactions between nanopesticides and edible plants are required in order to elucidate their impacts on human health and agriculture. Nanopesticides include formulations consisting of organic/inorganic nanoparticles. Drosophila melanogaster has become a powerful model in genetic research thanks to its genetic similarity to mammals. This project mainly aimed to generate new evidence for the toxic/genotoxic properties of different nanopesticides (a nanoemulsion (permethrin nanopesticides, 20 ± 5 nm), an inorganic nanoparticle as an active ingredient (copper(II) hydroxide [Cu(OH)2] nanopesticides, 15 ± 6 nm), a polymer-based nanopesticide (acephate nanopesticides, 55 ± 25 nm), and an inorganic nanoparticle associated with an organic active ingredient (validamycin nanopesticides, 1177 ± 220 nm)) and their microparticulate forms (i.e., permethrin, copper(II) sulfate pentahydrate (CuSO4·5H2O), acephate, and validamycin) widely used against agricultural pests, while also showing the merits of using Drosophila—a non-target in vivo eukaryotic model organism—in nanogenotoxicology studies. Significant biological effects were noted at the highest doses of permethrin (0.06 and 0.1 mM), permethrin nanopesticides (1 and 2.5 mM), CuSO4·5H2O (1 and 5 mM), acephate and acephate nanopesticides (1 and 5 mM, respectively), and validamycin and validamycin nanopesticides (1 and 2.5 mM, respectively). The results demonstrating the toxic/genotoxic potential of these nanopesticides through their impact on cellular internalization and gene expression represent significant contributions to future nanogenotoxicology studies.
Collapse
Affiliation(s)
- Eşref Demir
- Medical Laboratory Techniques Program, Vocational School of Health Services, Department of Medical Services and Techniques, Antalya Bilim University, Antalya 07190, Turkey
- Correspondence: ; Tel.: +90-242-245-0088; Fax: +90-242-245-0100
| | - Seyithan Kansız
- Faculty of Science, Department of Chemistry, Akdeniz University, Antalya 07070, Turkey
- Faculty of Science, Department of Chemistry, Ankara University, Ankara 07100, Turkey
| | - Mehmet Doğan
- Faculty of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya 07070, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Kırklareli University, Kırklareli 39100, Turkey
| | - Önder Topel
- Faculty of Science, Department of Chemistry, Akdeniz University, Antalya 07070, Turkey
| | - Gökhan Akkoyunlu
- Faculty of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya 07070, Turkey
| | - Muhammed Yusuf Kandur
- Industrial Biotechnology and Systems Biology Research Group, Faculty of Engineering, Department of Bioengineering, Marmara University, İstanbul 34854, Turkey
| | - Fatma Turna Demir
- Medical Laboratory Techniques Program, Vocational School of Health Services, Department of Medical Services and Techniques, Antalya Bilim University, Antalya 07190, Turkey
| |
Collapse
|
11
|
Turna Demir F, Demir E. Exposure to boron trioxide nanoparticles and ions cause oxidative stress, DNA damage, and phenotypic alterations in Drosophila melanogaster as an in vivo model. J Appl Toxicol 2022; 42:1854-1867. [PMID: 35837816 DOI: 10.1002/jat.4363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 11/09/2022]
Abstract
Boron trioxide nanoparticles (B2 O3 NPs) have recently been widely used in a range of applications including electronic device technologies, acousto-optic apparatus fields and as nanopowder for the production of special glasses. We propose Drosophila melanogaster as a useful in vivo model system to study the genotoxic risks associated with NP exposure. In this study we have conducted a genotoxic evaluation of B2 O3 NPs (size average 55.52 ± 1.41 nm) and its ionic form in D. melanogaster. B2 O3 NPs were supplied to third instar larvae at concentrations ranging from 0.1-10 mM. Toxicity, intracellular oxidative stress (reactive oxygen species, ROS), phenotypic alterations, genotoxic effect (via the wing somatic mutation and recombination test (SMART), and DNA damage (via Comet assay) were the end-points evaluated. B2 O3 NPs did not cause any mutagenic/recombinogenic effects in all tested non-toxic concentrations in Drosophila SMART. Negative data were also obtained with the ionic form. Exposure to B2 O3 NPs and its ionic form (at two highest concentrations, 2.5 and 5 mM) was found to induce DNA damage in Comet assay. Additionally, ROS induction in hemocytes and phenotypic alterations were determined in the mouths and legs of Drosophila. This study is the first study reporting genotoxicity data in the somatic cells of Drosophila larvae, emphasizing the importance of D. melanogaster as a model organism in investigating the different biological effects in a concentration dependent manner caused by B2 O3 NPs and its ionic form. The obtained in vivo results contribute to improvement the genotoxicity database on the B2 O3 NPs.
Collapse
Affiliation(s)
- Fatma Turna Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Antalya, Turkey
| | - Eşref Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Antalya, Turkey
| |
Collapse
|
12
|
Genotoxicity of Graphene-Based Materials. NANOMATERIALS 2022; 12:nano12111795. [PMID: 35683650 PMCID: PMC9182450 DOI: 10.3390/nano12111795] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/27/2023]
Abstract
Graphene-based materials (GBMs) are a broad family of novel carbon-based nanomaterials with many nanotechnology applications. The increasing market of GBMs raises concerns on their possible impact on human health. Here, we review the existing literature on the genotoxic potential of GBMs over the last ten years. A total of 50 articles including in vitro, in vivo, in silico, and human biomonitoring studies were selected. Graphene oxides were the most analyzed materials, followed by reduced graphene oxides. Most of the evaluations were performed in vitro using the comet assay (detecting DNA damage). The micronucleus assay (detecting chromosome damage) was the most used validated assay, whereas only two publications reported results on mammalian gene mutations. The same material was rarely assessed with more than one assay. Despite inhalation being the main exposure route in occupational settings, only one in vivo study used intratracheal instillation, and another one reported human biomonitoring data. Based on the studies, some GBMs have the potential to induce genetic damage, although the type of damage depends on the material. The broad variability of GBMs, cellular systems and methods used in the studies precludes the identification of physico-chemical properties that could drive the genotoxicity response to GBMs.
Collapse
|
13
|
Turna Demir F. In vivo effects of 1,4-dioxane on genotoxic parameters and behavioral alterations in Drosophila melanogaster. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:414-430. [PMID: 35023806 DOI: 10.1080/15287394.2022.2027832] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
1,4-Dioxane (DXN) is used as solvent in different consumer products including cosmetics, paints, surfactants, and waxes. In addition, DXN is released as an unwanted contaminating by-product as a result of some reactions including ethoxylation of alcohols, which occurs with in personal care products. Consequently, DXN pollution was detected in drinking water and is considered as an environmental problem. At present, the genotoxicity effects attributed to DXN are controversial. The present study using an in vivo model organism Drosophila melanogaster aimed to determine the toxic/genotoxic, mutagenic/recombinogenic, oxidative damage as evidenced by ROS production, phenotypic alterations as well as behavioral and developmental alterations that are closely related to neuronal functions. Data demonstrated that nontoxic DXN concentration (0.1, 0.25, 0.5, or 1%) induced mutagenic (1%) and recombinogenic (0.1, 0.25, or 0.5%) effects in wing spot test and genotoxicity in hemocytes using comet assay. The nontoxic concentrations of DXN (0.1, 0.25, 0.5, or 1%) significantly increased oxidative stress, climbing behavior, thermal sensivity and abnormal phenotypic alterations. Our findings show that in contrast to in vitro exposure, DXN using an in vivo model Drosophila melanogaster this compound exerts toxic and genotoxic effects. Data suggest that additional studies using other in vivo models are thus warranted.
Collapse
Affiliation(s)
- Fatma Turna Demir
- Vocational School of Health Services, Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Antalya Bilim University, Antalya, Turkey
| |
Collapse
|
14
|
Reproductive and Developmental Nanotoxicity of Carbon Nanoparticles. NANOMATERIALS 2022; 12:nano12101716. [PMID: 35630937 PMCID: PMC9144754 DOI: 10.3390/nano12101716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/25/2022]
Abstract
The presented review aims to summarize the knowledge regarding the reproductive and developmental toxicity of different types of carbon nanoparticles, such as graphene, graphene oxide, multi- and single-walled nanotubes, fullerenes, and nanodiamonds. Carbon nanoparticles have unique chemical and physical properties that make them an excellent material that can be applied in many fields of human activity, including industry, food processing, the pharmaceutical industry, or medicine. Although it has a high degree of biocompatibility, possible toxic effects on different tissue types must also be taken into account. Carbon nanoparticles are known to be toxic to the respiratory, cardiovascular, nervous, digestive system, etc., and, according to current studies, they also have a negative effect on reproduction and offspring development.
Collapse
|
15
|
Effects of cadmium on oxidative stress and cell apoptosis in Drosophila melanogaster larvae. Sci Rep 2022; 12:4762. [PMID: 35307728 PMCID: PMC8934349 DOI: 10.1038/s41598-022-08758-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/11/2022] [Indexed: 12/22/2022] Open
Abstract
AbstractWith the increase of human activities, cadmium (Cd) pollution has become a global environmental problem affecting biological metabolism in ecosystem. Cd has a very long half-life in humans and is excreted slowly in organs, which poses a serious threat to human health. In order to better understand the toxicity effects of cadmium, third instar larvae of Drosophila melanogaster (Canton-S strain) were exposed to different concentrations (1.125 mg/kg, 2.25 mg/kg, 4.5 mg/kg, and 9 mg/kg) of cadmium. Trypan blue staining showed that intestinal cell damage of Drosophila larvae increased and the comet assay indicated significantly more DNA damage in larvae exposed to high Cd concentrations. The nitroblue tetrazolium (NBT) experiments proved that content of reactive oxygen species (ROS) increased, which indicated Cd exposure could induce oxidative stress. In addition, the expression of mitochondrial adenine nucleotide transferase coding gene (sesB and Ant2) and apoptosis related genes (Debcl, hid, rpr, p53, Sce and Diap1) changed, which may lead to increased apoptosis. These findings confirmed the toxicity effects on oxidative stress and cell apoptosis in Drosophila larvae after early cadmium exposure, providing insights into understanding the effects of heavy metal stress in animal development.
Collapse
|
16
|
Mukherjee S, Rananaware P, Brahmkhatri V, Mishra M. Polyvinylpyrrolidone-Curcumin Nanoconjugate as a Biocompatible, Non-toxic Material for Biological Applications. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02230-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Guo Q, Yang Y, Zhao L, Chen J, Duan G, Yang Z, Zhou R. Graphene oxide toxicity in W 1118 flies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150302. [PMID: 34536880 DOI: 10.1016/j.scitotenv.2021.150302] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/09/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
The risk of graphene oxide (GO) exposure to various species has been greatly amplified in recent years due to its booming production and applications in various fields. However, a deep understanding of the GO biosafety lags its wide applications. Herein, we used W1118 flies as a model organism to study GO toxicity at relatively low concentrations. We found that GO exposure led to remarkable weight loss, delayed development, retarded motion, and shortened lifespan of these flies. On the other hand, the GO influence on their sex ratio and the total number of pupae and adults were insignificant. The toxicological effect of GO was shown to be related to its serious compromise of the nutrient absorption in flies due to the severe damages in midguts. These damages were then attributed to the excessive accumulation of reactive oxygen species (ROS), which triggers the oxidative stress. These findings reveal the underlying mechanisms of GO biotoxicities in fruit flies, which might provide a useful reference to assess the risks of these newly invented nanomaterials likely never encountered by various species before.
Collapse
Affiliation(s)
- Qing Guo
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ying Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lin Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jian Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guangxin Duan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Zaixing Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Ruhong Zhou
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China; Institute of Quantitative Biology and College of Life Sciences, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
18
|
Demir E, Demir FT, Marcos R. Drosophila as a Suitable In Vivo Model in the Safety Assessment of Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:275-301. [DOI: 10.1007/978-3-030-88071-2_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Lin H, Liu X, He C. Ceramide-Graphene Oxide Nanoparticles Enhance the Cytotoxicity and Reduce the Occurrence and Development of Breast Cancer Xenografts. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ceramide exerts crucial effect on inducing tumor cell apoptosis, while its insolublility limits the application in treating tumors. In this study, we used NGO-PEG-PEI (NPP) and C6-NPP/Cer (NPP/C) as method to explore NPP/C’s effect and its anti-tumor ability on breast cancer.
Confocal microscopy was used to detect the transfection efficiency in tumor cells. Breast cancer cells were treated with C6-NGO-PEG-PEI solution (control group) or NPP/C followed by analysis of cell proliferation and apoptosis by flow cytometry. C6-ceramide solution (control group) or NPP/C
was administrated into nude mice with tumor followed by measuring tumor volume and size as well as cell proliferation and apoptosis. NGO-PEG-PEI could significantly enhance cell intake and inhibit cell proliferation and promote apoptosis. In vivo transplantation tumor model experiments
showed that NPP/C could decrease tumor growth, slow down the multiplication rate and accelerate apoptosis. In conclusion, Ceramide-graphene oxide can inhibit tumor growth by inhibiting tumor cell growth and promoting cell apoptosis.
Collapse
Affiliation(s)
- Hongxia Lin
- Department of Breast Surgery, Haikou People’s Hospital, Haikou City, Hainan Province, 570208, China
| | - Xiaoping Liu
- Department of Breast Surgery, Haikou People’s Hospital, Haikou City, Hainan Province, 570208, China
| | - Chunnuan He
- Department of Neurosurgery, Haikou People’s Hospital, Haikou City, Hainan Province, 570208, China
| |
Collapse
|
20
|
Demir E. Mechanisms and biological impacts of graphene and multi-walled carbon nanotubes on Drosophila melanogaster: Oxidative stress, genotoxic damage, phenotypic variations, locomotor behavior, parasitoid resistance, and cellular immune response. J Appl Toxicol 2021; 42:450-474. [PMID: 34486762 DOI: 10.1002/jat.4232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
The use of graphene and multi-walled carbon nanotubes (MWCNTs) has now become rather common in medical applications as well as several other areas thanks to their useful physicochemical properties. While in vitro testing offers some potential, in vivo research into toxic effects of graphene and MWCNTs could yield much more reliable data. Drosophila melanogaster has recently gained significant popularity as a dynamic eukaryotic model in examining toxicity, genotoxicity, and biological effects of exposure to nanomaterials, including oxidative stress, cellular immune response against two strains (NSRef and G486) of parasitoid wasp (Leptopilina boulardi), phenotypic variations, and locomotor behavior risks. D. melanogaster was used as a model organism in our study to identify the potential risks of exposure to graphene (thickness: 2-18 nm) and MWCNTs in different properties (as pure [OD: 10-20 nm short], modified by amide [NH2 ] [OD: 7-13 nm length: 55 μm], and modified by carboxyl [COOH] [OD: 30-50 nm and length: 0.5-2 μm]) at concentrations ranging from 0.1 to 250 μg/ml. Significant effects were observed at two high doses (100 and 250 μg/ml) of graphene or MWCNTs. This is the first study to report findings of cellular immune response against hematopoiesis and parasitoids, nanogenotoxicity, phenotypic variations, and locomotor behavior in D. melanogaster.
Collapse
Affiliation(s)
- Eşref Demir
- Vocational School of Health Services, Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Antalya Bilim University, Antalya, Turkey
| |
Collapse
|
21
|
Mishra M, Panda M. Reactive oxygen species: the root cause of nanoparticle-induced toxicity in Drosophila melanogaster. Free Radic Res 2021; 55:671-687. [PMID: 33877010 DOI: 10.1080/10715762.2021.1914335] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanotechnology is a rapidly developing technology in the twenty-first century. Nanomaterials are extensively used in numerous industries including cosmetics, food, medicines, industries, agriculture, etc. Along with its wide application toxicity is also reported from studies of various model organisms including Drosophila. The toxicity reflects cytotoxicity, genotoxicity, and teratogenicity. The current study correlates the toxicity as a consequence of reactive oxygen species (ROS) generated owing to the presence of nanoparticles with the living cell. ROS mainly includes hydroxyl ions, peroxide ions, superoxide anions, singlet oxygen, and hypochlorous acids. An elevated level of ROS can damage the cells by various means. To protect the body from excess ROS, living cells possess a set of antioxidant enzymes which includes peroxidase, glutathione peroxidase, and catalase. If the antioxidant enzymes cannot nullify the elevated ROS level than DNA damage, cell damage, cytotoxicity, apoptosis, and uncontrolled cell regulations occur resulting in abnormal physiological and genotoxic conditions. Herewith, we are reporting various morphological and physiological defects caused after nanoparticle treatment as a function of redox imbalance.
Collapse
Affiliation(s)
- Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Mrutyunjaya Panda
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
22
|
Ahuja A, Tyagi PK, Tyagi S, Kumar A, Kumar M, Sharifi-Rad J. Potential of Pueraria tuberosa (Willd.) DC. to rescue cognitive decline associated with BACE1 protein of Alzheimer's disease on Drosophila model: An integrated molecular modeling and in vivo approach. Int J Biol Macromol 2021; 179:586-600. [PMID: 33705837 DOI: 10.1016/j.ijbiomac.2021.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 01/04/2023]
Abstract
The indispensable role of Beta-site amyloid precursor protein cleaving enzyme-1 (BACE1) in Amyloid beta (Aβ) plaques generation and Aβ-mediated synaptic dysfunctions makes it a crucial target for therapeutic intervention in Alzheimer's disease (AD). In order to find out the potential inhibitors of BACE1, the present study focused on five phytochemicals from Pueraria tuberosa, namely, daidzin, genistin, mangiferin, puerarin, and tuberosin. A molecular docking study showed that all five phytochemicals presented the strongest BACE1 inhibition. Integrated molecular dynamics simulations and free energy calculations demonstrated that all five natural compounds have stable and favorable energies causing strong binding with the pocket site of BACE1 on 50 ns. All these molecules also passed Lipinski's rule of five. To validate the molecular modeling based findings, we primarily targeted the cognitive decline associated with BACE1 expression in AD flies with P. tuberosa. Significant improvement in cognitive decline was observed in AD flies in different behavioral assays such as Larval crawling assay (16.38%), Larval light preference assay (26.39%), Climbing assay (32.97%), Cold sensitivity assay (43.6%), and Thermal sensitivity assay (44.42%). The present findings suggest that P. tuberosa may be considered as a promising dietary supplement that can significantly ameliorate cognitive decline caused by BACE1 in Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Anami Ahuja
- Research Scholar, Department of Biotechnology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226031, Uttar Pradesh, India; Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut 250005, Uttar Pradesh, India.
| | - Pankaj Kumar Tyagi
- Department of Biotechnology Engineering, Noida Institute of Engineering & Technology, Greater Noida 201306, Uttar Pradesh, India.
| | - Shruti Tyagi
- Department of Biotechnology Engineering, Noida Institute of Engineering & Technology, Greater Noida 201306, Uttar Pradesh, India
| | - Anuj Kumar
- Advanced Centre for Computational and Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun 248007, Uttarakhand, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador.
| |
Collapse
|
23
|
Lama S, Merlin-Zhang O, Yang C. In Vitro and In Vivo Models for Evaluating the Oral Toxicity of Nanomedicines. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2177. [PMID: 33142878 PMCID: PMC7694082 DOI: 10.3390/nano10112177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Toxicity studies for conventional oral drug formulations are standardized and well documented, as required by the guidelines of administrative agencies such as the US Food & Drug Administration (FDA), the European Medicines Agency (EMA) or European Medicines Evaluation Agency (EMEA), and the Japanese Pharmaceuticals and Medical Devices Agency (PMDA). Researchers tend to extrapolate these standardized protocols to evaluate nanoformulations (NFs) because standard nanotoxicity protocols are still lacking in nonclinical studies for testing orally delivered NFs. However, such strategies have generated many inconsistent results because they do not account for the specific physicochemical properties of nanomedicines. Due to their tiny size, accumulated surface charge and tension, sizeable surface-area-to-volume ratio, and high chemical/structural complexity, orally delivered NFs may generate severe topical toxicities to the gastrointestinal tract and metabolic organs, including the liver and kidney. Such toxicities involve immune responses that reflect different mechanisms than those triggered by conventional formulations. Herein, we briefly analyze the potential oral toxicity mechanisms of NFs and describe recently reported in vitro and in vivo models that attempt to address the specific oral toxicity of nanomedicines. We also discuss approaches that may be used to develop nontoxic NFs for oral drug delivery.
Collapse
Affiliation(s)
| | | | - Chunhua Yang
- Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Institute for Biomedical Sciences, Petite Science Center, Suite 754, 100 Piedmont Ave SE, Georgia State University, Atlanta, GA 30303, USA; (S.L.); (O.M.-Z.)
| |
Collapse
|
24
|
Mishra PK, Ekielski A, Mukherjee S, Sahu S, Chowdhury S, Mishra M, Talegaonkar S, Siddiqui L, Mishra H. Wood-Based Cellulose Nanofibrils: Haemocompatibility and Impact on the Development and Behaviour of Drosophila melanogaster. Biomolecules 2019; 9:biom9080363. [PMID: 31412664 PMCID: PMC6722666 DOI: 10.3390/biom9080363] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Wood-based cellulose nanofibrils (CNF) offer an excellent scaffold for drug-delivery formulation development. However, toxicity and haemocompatibility of the drug carrier is always an important issue. In this study, toxicity-related issues of CNF were addressed. Different doses of CNF were orally administered to Drosophila and different tests like the developmental cycle, trypan blue exclusion assay, larva crawling assay, thermal sensitivity assay, cold sensitivity assay, larval light preference test, climbing behaviour, nitroblue tetrazolium (NBT) reduction assay, adult phenotype, and adult weight were conducted to observe the impact on its development and behaviour. A haemocompatibility assay was done on the blood taken from healthy Wistar rats. In Drosophila, the abnormalities in larval development and behaviour were observed in the behavioural assays. However, the cytotoxic effect could not be confirmed by the gut staining and level of reactive oxygen species. The larvae developed into an adult without any abnormality in the phenotype. The CNF did cause loss of weight in the adult flies and did not cause much toxicity within the body since there was no phenotypic defect. Hemolysis data also suggested that CNF was safe at lower doses, as the data was well within acceptable limits. All these results suggest that cellulose nanofibres have no significant cytotoxic effects on Drosophila. However, the developmental and behavioural abnormalities suggest that CNF may act as a behavioural teratogen.
Collapse
Affiliation(s)
- Pawan Kumar Mishra
- Department of Wood Processing Technology, Mendel University in Brno, 61300 Brno, Czech Republic.
| | - Adam Ekielski
- Department of Production Management and Engineering, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Sumit Mukherjee
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha 76908, India
| | - Swetapadma Sahu
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha 76908, India
| | - Saptarshi Chowdhury
- Biotechnology Department, Heritage Institute of Technology, Kolkata 700107, West Bengal, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha 76908, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Lubna Siddiqui
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi 110017, New Delhi, India
| | - Harshita Mishra
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi 110017, New Delhi, India
| |
Collapse
|