1
|
Xu Y, Yu S, Huang C, Xu Z. Enhanced photocatalytic removal of bromate in drinking water by Au/TiO 2 under ultraviolet light. RSC Adv 2024; 14:23011-23022. [PMID: 39040693 PMCID: PMC11261577 DOI: 10.1039/d4ra03453h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024] Open
Abstract
The photo-reduction of bromate (BrO3 -) has attracted much attention due to the carcinogenesis and genotoxicity of BrO3 - in drinking water. In this study, a heterojunction photocatalyst was developed by depositing Au nanoparticles (NPs) onto P25 TiO2 NPs through a one-pot, solvent-thermal process. Due to the unique properties of Au, the Au NPs deposited on the TiO2 surface created a Schottky barrier between the metal and the semiconductor, leading to an effective separation of photo-generated charge carriers as the Au nanoparticles served as electron sinks. The Au/TiO2 photocatalyst demonstrated efficient reduction of BrO3 - under UV light illumination without the need for sacrificial agents. The effect of different Au loading of Au/TiO2 was systematically investigated for its influence on the generation of electrons and the reduction ability of BrO3 -. The results indicate that the 1% Au/TiO2 catalyst exhibited a higher concentration of localized electrons, rendering it more effective in BrO3 - removal. The photocatalytic efficiency for BrO3 - reduction decreased upon the addition of K2S2O8 as an electron quencher, suggesting that the primary factor in this photo-reduction process was the availability of electrons. These findings hold promise for the potential application of the Au/TiO2 catalyst in the removal of BrO3 - from drinking water through photo-reduction.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University Shanghai 200092 P. R. China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 P. R. China
| | - Shuili Yu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University Shanghai 200092 P. R. China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 P. R. China
| | - Cong Huang
- PowerChina Huadong Engineering Corporation Limited Hangzhou 311122 P. R. China
| | - Zheng Xu
- PowerChina Huadong Engineering Corporation Limited Hangzhou 311122 P. R. China
| |
Collapse
|
2
|
Bosio M, de Souza-Chaves BM, Saggioro EM, Bassin JP, Dezotti MWC, Quinta-Ferreira ME, Quinta-Ferreira RM. Electrochemical degradation of psychotropic pharmaceutical compounds from municipal wastewater and neurotoxicity evaluations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23958-23974. [PMID: 33398734 DOI: 10.1007/s11356-020-12133-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Contaminants of emerging concern (CECs) are released daily into surface water, and their recalcitrant properties often require tertiary treatment. Electrochemical oxidation (EO) is often used as an alternative way to eliminate these compounds from water, although the literature barely addresses the neurotoxic effects of residual by-products. Therefore, this study investigated the performance of EO in the removal of five CECs (alprazolam, clonazepam, diazepam, lorazepam, and carbamazepine) and performed neurotoxicity evaluations of residual EO by-products in Wistar rat brain hippocampal slices. Platinum-coated titanium (Ti/Pt) and boron-doped diamond (BDD) electrodes were studied as anodes. Different current densities (13-75 A m-2), pH values (3-10), electrolyte dosages (NaCl), and matrix effects were assessed using municipal wastewater (MWW). The drugs were successfully degraded after 5 min of reaction for both the Ti/Pt and BDD electrodes when a current density of 75 A m-2 was applied. For Ti/Pt and BDD, neutral and acidic pH demonstrated better CEC removal performance, respectively. Compound degradation using MWW achieved 40% removal after 120 min for Ti/Pt and ranged between 33 and 52% for the BDD anode. For Ti/Pt, neurotoxicity studies using MWW indicated a decrease in reactive oxygen species (ROS) signals. However, when an artificial cerebrospinal fluid (ACSF) medium was reapplied, the signal recovered and increased to a value above the baseline, indicating that cells recovered part of their normal activity but remained in a different condition. For the BDD anode, the treated MWW did not cause significant ROS production variations, suggesting that he EO was effective in eliminating the toxicity of the treated solution.
Collapse
Affiliation(s)
- Morgana Bosio
- Chemical Engineering Program - COPPE, Federal University of Rio de Janeiro, PO Box 68502, Rio de Janeiro, RJ, 21941-972, Brazil
- CIEPQPF - Research Centre of Chemical Process Engineering and Forest Products, Department of Chemical Engineering, University of Coimbra, P-3030-790, Coimbra, Portugal
- Department of Physics, University of Coimbra, P-3004-516, Coimbra, Portugal
| | - Bianca Miguel de Souza-Chaves
- Chemical Engineering Program - COPPE, Federal University of Rio de Janeiro, PO Box 68502, Rio de Janeiro, RJ, 21941-972, Brazil.
- CIEPQPF - Research Centre of Chemical Process Engineering and Forest Products, Department of Chemical Engineering, University of Coimbra, P-3030-790, Coimbra, Portugal.
- Department of Physics, University of Coimbra, P-3004-516, Coimbra, Portugal.
| | - Enrico Mendes Saggioro
- Sanitation and Environment Health Department, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões, Rio de Janeiro, RJ, 1480, Brazil
| | - João Paulo Bassin
- Chemical Engineering Program - COPPE, Federal University of Rio de Janeiro, PO Box 68502, Rio de Janeiro, RJ, 21941-972, Brazil
| | - Márcia W C Dezotti
- Chemical Engineering Program - COPPE, Federal University of Rio de Janeiro, PO Box 68502, Rio de Janeiro, RJ, 21941-972, Brazil
| | | | - Rosa M Quinta-Ferreira
- CIEPQPF - Research Centre of Chemical Process Engineering and Forest Products, Department of Chemical Engineering, University of Coimbra, P-3030-790, Coimbra, Portugal
| |
Collapse
|
3
|
Abstract
The presence of bromate in water sources generates environmental concern due to its toxicity for humans. Diverse technologies, like membranes, ion exchange, chemical reduction, etc., can be employed to treat bromate-polluted water but they produce waste that must be treated. An alternative to these technologies can be the catalytic reduction of bromate to bromide using hydrogen as a reducing agent. In this review, we analyze the research published about this catalytic technology. Specifically, we summarize and discuss about the state of knowledge related to (1) the different metals used as catalysts for the reaction; (2) the influence of the support on the catalytic activity; (3) the characterization of the catalysts; (4) the reaction mechanisms; and (5) the influence of the water composition in the catalytic activity and in the catalyst stability. Based on published papers, we analyze the strength and weaknesses of this technique and the possibilities of using this reaction for the treatment of bromate-polluted water as a sustainable process.
Collapse
|
4
|
Morais DFS, Boaventura RAR, Moreira FC, Vilar VJP. Bromate removal from water intended for human consumption by heterogeneous photocatalysis: Effect of major dissolved water constituents. CHEMOSPHERE 2021; 263:128111. [PMID: 33297104 DOI: 10.1016/j.chemosphere.2020.128111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
This study focuses on the influence of major dissolved constituents naturally found in waters intended for human consumption on bromate (BrO3-) reduction by heterogeneous photocatalysis. The individual and combined effect of chloride (Cl-), bicarbonate/carbonic acid (HCO3-/H2CO3), nitrate (NO3-), sulphate (SO42-) and humic acids (HAs) on BrO3- reduction was evaluated in synthetic waters (SWs). Additionally, freshwaters (FWs) from a drinking water treatment plant (DWTP) were tested and directly compared to SWs. Cl- was beneficial for contents in the range 0.47-1.4 mM, with negligible influence for lower and higher contents. NO3- had a null effect regardless of its content (0.024-0.81 mM). HCO3-/H2CO3 (0.061/0.45 mM), SO42- (0.12-2.6 mM) and HAs (0.11-1.0 mM C) had a negative effect in the tested contents. The BrO3- reduction rate was 2.8 times lower in SW with a mixture of water constituents compared to SW without constituents addition. This decline on BrO3- reduction rate corresponded to the sum of the individual species contribution and so there was no evidence of synergetic effects. By contrast, the use of FWs provided BrO3- reduction rates only slightly lower than that found for SW without constituents addition (∼1.2-fold), which can be attributed to: (i) the distinct characteristics of the organic matter of FWs (HAs, fulvic acids and humins with distinct molecular weights and functional groups) compared to that of SW (pure HAs), and/or (ii) the presence in FWs of other inorganics in addition to those here addressed. The heterogeneous TiO2 photocatalysis proved to be a promising process for BrO3- reduction in DWTPs.
Collapse
Affiliation(s)
- Daniela F S Morais
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade Do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Rui A R Boaventura
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade Do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Francisca C Moreira
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade Do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Vítor J P Vilar
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade Do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
5
|
Cerrillo JL, Lopes CW, Rey F, Agostini G, Kiwi-Minsker L, Palomares AE. Nature and evolution of Pd catalysts supported on activated carbon fibers during the catalytic reduction of bromate in water. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00606h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pd/ACF are active catalysts for the bromate reduction and their activity depends on the Pd crystal size with a pseudo-first order kinetic respect to BrO3− and H2 partial pressure.
Collapse
Affiliation(s)
- Jose L. Cerrillo
- Instituto de Tecnología Química (CSIC – Universitat Politècnica de València)
- Spain
| | - Christian W. Lopes
- Instituto de Tecnología Química (CSIC – Universitat Politècnica de València)
- Spain
- CAPES
- Ministério da Educação do Brasil
- Brasilia
| | - Fernando Rey
- Instituto de Tecnología Química (CSIC – Universitat Politècnica de València)
- Spain
| | | | - Lioubov Kiwi-Minsker
- Ecole Polytechnique Fédéral de Lausanne (EPFL)
- Switzerland
- Tver State University
- Russian Federation
| | - Antonio E. Palomares
- Instituto de Tecnología Química (CSIC – Universitat Politècnica de València)
- Spain
| |
Collapse
|