1
|
Fróis A, Santos AC, Louro CS. Corrosion of Fixed Orthodontic Appliances: Causes, Concerns, and Mitigation Strategies. METALS 2023; 13:1955. [DOI: 10.3390/met13121955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The orthodontic supply market is a prosperous billion-dollar industry, driven by an increasing demand for orthodontic appliances. The supremacy of metallic first-generation biomaterials is evident for manufacturing brackets, archwires, bands, and other components due to their well-recognized chemical inertness, spontaneous passivation, biocompatibility, and favorable mechanical properties combination. However, the oral cavity is the ultimate corrosion-promoting environment for any metallic material. In this work, the general picture of the intraoral degradation of fixed orthodontic appliances is first addressed, from the causes to the harmful effects and their oral clinical implications. Current mitigation strategies are also pointed out, including the alloys’ bulk composition adjustment combined with new and advanced manufacturing processes and/or their surface treatment or coating deposition. The versatile use of thin films and coatings stands out with different deposition technologies: Many in vivo and in vitro efforts have been devoted to oral aging, from monolithic to composite architectures and micro- to nano-scale materials, to meet the best and safest oral practice demands. Unfortunately, literature data suggest that even the existing commercially available protective coatings have drawbacks and are fallible. Further multidisciplinary research is still required to effectively mitigate the corrosion behavior of fixed orthodontic appliances.
Collapse
Affiliation(s)
- António Fróis
- Department of Mechanical Engineering, CEMMPRE, ARISE, University of Coimbra, Rua Luis Reis Santos, 3030-177 Coimbra, Portugal
- Faculty of Medicine, Biophysics Institute, Coimbra Institute for Clinical and Biomedical Research/Centre for Innovative Biomedicine and Biotechnology (iCBR/CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Area of Environment Genetics and Oncobiology (CIMAGO), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cristina Santos
- Department of Mechanical Engineering, CEMMPRE, ARISE, University of Coimbra, Rua Luis Reis Santos, 3030-177 Coimbra, Portugal
- Faculty of Medicine, Biophysics Institute, Coimbra Institute for Clinical and Biomedical Research/Centre for Innovative Biomedicine and Biotechnology (iCBR/CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Area of Environment Genetics and Oncobiology (CIMAGO), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cristina Santos Louro
- Department of Mechanical Engineering, CEMMPRE, ARISE, University of Coimbra, Rua Luis Reis Santos, 3030-177 Coimbra, Portugal
| |
Collapse
|
2
|
Yan H, Hu X, Shao H, Li J, Deng J, Liu L. Low-Cost Full-Range Detection of C-Reactive Protein in Clinical Samples by Aptamer Hairpin Probes and Coprecipitation of Silver Ions and Gold Nanoparticles. Anal Chem 2023; 95:11918-11925. [PMID: 37531571 DOI: 10.1021/acs.analchem.3c01131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
C-reactive protein (CRP) levels can vary widely related to diverse disease contexts. However, expensive antibodies have impeded the clinical utility of antibody-based full-range CRP assays, especially in developing countries. Herein, we established a low-cost, antibody-free, 96-well plate-based full-range CRP detection method by combining gold nanoparticles (AuNPs), silver iodide (AgI), Eosin Y, and the aptamer hairpin probe (AHP) with Ag+-mediated cytosine-cytosine mismatches, that is, the Au@AgI/Eosin Y-AHP method. After binding the target CRP, the AHP released Ag+, which subsequently induced the aggregation of AuNPs on the surface of AgI colloids, resulting in a significant increase in the adsorption of Eosin Y on the surface of AuNPs. The changes in fluorescence intensity (FI) of Eosin Y in the supernate without and with CRP were proportional to the concentration of the CRP in the wide range of 0.01-40 ng/mL (r = 0.9969), and 96 samples can be detected in 96-well plates simultaneously by a microplate reader within 45 min. Remarkably, the CRP levels of 100 clinical samples achieved with the Au@AgI/Eosin Y-AHP had a good correlation with those obtained with the latex-enhanced immune turbidimetry assay (r = 0.986). Furthermore, the kit based on the Au@AgI/Eosin Y-AHP method costs only $8.1 for 100 tests. Therefore, the new method is beneficial for less developed areas where expensive assays are not affordable.
Collapse
Affiliation(s)
- Hong Yan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huaze Shao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jincheng Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jieqi Deng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lihong Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Olszewska A, Hanć A, Barałkiewicz D, Rzymski P. Metals and Metalloids Release from Orthodontic Elastomeric and Stainless Steel Ligatures: In Vitro Risk Assessment of Human Exposure. Biol Trace Elem Res 2020; 196:646-653. [PMID: 31686396 PMCID: PMC7306017 DOI: 10.1007/s12011-019-01936-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
Elastomeric ligatures are increasingly used as a part of esthetic orthodontic treatment, particularly in children. The aim of the present study was to experimentally test whether these appliances may contribute to exposure to toxic elements. In the present study, elastomeric ligatures (ELs) were incubated in artificial human saliva for 1 month (a typical period of their use) and the release of 21 metals (Ba, Cd, Co, Cr, Cu, Fe, Li, Mn, Mg, Mo, Ni, Pb, Rb, Tl, Ti, Sb, Sr, Sn, Zn, U, V) and 2 metalloids (As and Ge) was studied using inductively coupled plasma-mass spectrometry. For comparison, stainless steel ligatures (SLs) were incubated for 1, 3, and 6 months (since sometimes their use is prolonged) under similar conditions. The determined metal levels were compared to the corresponding safety limits for human exposure. During 1 month, the ELs released Cd, Co, Cr, Mn, Ni, and Sn at total mean ± SD level of 0.31 ± 0.09, 0.98 ± 0.30, 3.96 ± 1.31, 14.7 ± 8.5, 13.8 ± 4.8, and 49.5 ± 27.7 μg, respectively. Other elements were always below the detection limits. In case of SL, the release of Co, Cr, Fe, Ni, Mn, and Sn was observed, and the determined values increased over the studied period. After 6 months, their total mean ± SD levels amounted to 28.6 ± 0.2, 21.7 ± 0.2, 623.5 ± 3.0, 1152.7 ± 1.8, 5.5 ± 0.3, and 22.6 ± 0.2 μg, respectively. The released metal levels from both ligature types were always below safety limits. The release of Ni from SL during 6 months would constitute 5.0 and 11.5% of tolerable intake in adults and children, respectively. The results of this in vitro study highlight that the use of ligatures in orthodontic treatment can be considered safe in terms of metal exposure although elastic ligatures replaced on a monthly basis appear to be advantageous in comparison to the prolonged use of stainless steel appliances.
Collapse
Affiliation(s)
- Aneta Olszewska
- Department of Facial Malformation, Poznan University of Medical Sciences, Poznań, Poland
| | - Anetta Hanć
- Department of Trace Element Analysis by Spectrometry Method, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Danuta Barałkiewicz
- Department of Trace Element Analysis by Spectrometry Method, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| |
Collapse
|
4
|
Manousek J, Felsoci M, Miklik R, Parenica J, Krejci J, Bjørklund G, Klanova J, Mlejnek D, Miklikova M, Lokaj P, Chirumbolo S, Spinar J. Delayed-type Hypersensitivity to Metals in Newly Diagnosed Patients with Nonischemic Dilated Cardiomyopathy. Cardiovasc Toxicol 2020; 20:571-580. [PMID: 32557318 DOI: 10.1007/s12012-020-09582-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The causes of nonischemic dilated cardiomyopathy are classified as genetic or nongenetic, but environmental factors such as metal pollutants may interact with genetic susceptibility. The presence of metal particles has been detected in the myocardium, including in those patients with dilated cardiomyopathy. It is also known that hypersensitivity reactions can induce inflammation in tissue. The present study aimed to verify if metal-induced delayed-type hypersensitivity is present in patients with nonischemic dilated cardiomyopathy. The patient group consisted of 30 patients with newly diagnosed dilated cardiomyopathy; the control group comprised 41 healthy subjects. All patients and control subjects provided blood samples for lymphocyte transformation testing (MELISA®) to assess possible hypersensitivity to seven common metals. Specific exposure to metals was based on interview data. Results showed that exposure to cadmium and lead (p = 0.0002), aluminum (p = 0.0006), nickel (p = 0.0012), and chromium (p = 0.0065) was more often reported by patients than controls. The patients also had significantly more frequent hypersensitivity reactions to mercury (26.7% vs. 7.3%, p = 0.014624), nickel (40% vs. 12.2%, p = 0.02341), and silver (20% vs. 4.8%, p = 0.025468) than the control group. Patients with dilated cardiomyopathy had greater exposure to certain metals compared with healthy controls. Hypersensitivity to metals was more frequent in patients with dilated cardiomyopathy, suggesting a possible association that warrants further investigation.
Collapse
Affiliation(s)
- Jan Manousek
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marian Felsoci
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Roman Miklik
- Department of Cardiology, University Hospital and Faculty of Medicine Pilsen, Charles University, Prague, Czech Republic.
| | - Jiri Parenica
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Krejci
- Department of Cardiovascular Diseases, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| | - Jana Klanova
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Dalibor Mlejnek
- Department of Cardiovascular Diseases, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marie Miklikova
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Lokaj
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Salvatore Chirumbolo
- Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CONEM Scientific Secretary, Verona, Italy
| | - Jindrich Spinar
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|