1
|
Pais R, Conde T, Neves BB, Pinho M, Coelho M, Pereira H, Rodrigues AMC, Domingues P, Gomes AM, Urbatzka R, Domingues R, Melo T. Bioactive Lipids in Dunaliella salina: Implications for Functional Foods and Health. Foods 2024; 13:3321. [PMID: 39456383 PMCID: PMC11507028 DOI: 10.3390/foods13203321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Dunaliella salina is a green microalga extensively explored for β-carotene production, while knowledge of its lipid composition is still limited and poorly investigated. Among lipids, polar lipids have been highlighted as bioactive phytochemicals with health-promoting properties. This research aimed to provide an in-depth lipidome profiling of D. salina using liquid and gas chromatography coupled with mass spectrometry. The lipid content was 6.8%, including phospholipids, glycolipids, betaine lipids, sphingolipids, triglycerides, diglycerides, and pigments. Among the total esterified fatty acids, 13.6% were 18:3 omega-3 and 14.7% were 18:1 omega-9. The lipid extract of D. salina showed anti-inflammatory activity by inhibiting cyclooxygenase-2 activity at 100 µg/mL, dose-dependent antioxidant scavenging activity, and antidiabetic activity by inhibiting α-glucosidase activity at 25 and 125 µg/mL. In conclusion, the lipid extract of D. salina has the potential to be used as a functional food ingredient or in the nutraceutical and cosmeceutical industries.
Collapse
Affiliation(s)
- Rita Pais
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (R.P.); (T.C.); (B.B.N.); (M.P.); (R.D.)
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal;
| | - Tiago Conde
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (R.P.); (T.C.); (B.B.N.); (M.P.); (R.D.)
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal;
| | - Bruna B. Neves
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (R.P.); (T.C.); (B.B.N.); (M.P.); (R.D.)
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal;
| | - Marisa Pinho
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (R.P.); (T.C.); (B.B.N.); (M.P.); (R.D.)
| | - Marta Coelho
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.); (A.M.G.)
| | - Hugo Pereira
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | | | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal;
| | - Ana Maria Gomes
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.); (A.M.G.)
| | - Ralph Urbatzka
- Biodiscovery for Health Group, CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal;
| | - Rosário Domingues
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (R.P.); (T.C.); (B.B.N.); (M.P.); (R.D.)
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal;
| | - Tânia Melo
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (R.P.); (T.C.); (B.B.N.); (M.P.); (R.D.)
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal;
| |
Collapse
|
2
|
de Souza Celente G, de Cassia de Souza Schneider R, Medianeira Rizzetti T, Lobo EA, Sui Y. Using wastewater as a cultivation alternative for microalga Dunaliella salina: Potentials and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168812. [PMID: 38000734 DOI: 10.1016/j.scitotenv.2023.168812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Untreated or poorly treated wastewater still represents environmental issues world-widely. Wastewater, especially saline wastewater treatment, is still primarily associated with high costs from physical and chemical processes, as high salinity hinders biological treatment. One favourable way is to find the suitable biological pathways and organisms to improve the biological treatment efficiency. In this context, halophilic microorganisms could be strong candidates to address the economics and effectiveness of the saline wastewater treatment process. Dunaliella salina is a photoautotrophic microalga that grows in saline environments. It is known for producing marketable bio-compounds such as carotenoids, lipids, and proteins. A biological treatment based on D. salina cultivation offers the opportunity to treat saline wastewater, reducing the threat of possible eutrophication from inappropriate discharge. At the same time, D. salina cultivation could yield compounds of industrial relevance to turn saline wastewater treatment into a profitable and sustainable process. Most research on D. salina has primarily focused on bioproduct generation, leaving thorough reviews of its application in wastewater treatment inadequate. This paper discusses the future challenges and opportunities of using D. salina to treat wastewater from different sources. The main conclusions are (1) D. salina effectively recovers some heavy metals (driven by metal binding capacity and exposure time) and nutrients (driven by pH, their bioavailability, and functional groups in the cell); (2) salinity plays a significant role in bioproducts generation, and (3) wastewater can be combined with the generation of bioproducts.
Collapse
Affiliation(s)
- Gleison de Souza Celente
- Environmental Technology Post-graduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil; Centre of Excellence in Oleochemical and Biotechnological Products and Processes, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil; School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Rosana de Cassia de Souza Schneider
- Environmental Technology Post-graduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil; Centre of Excellence in Oleochemical and Biotechnological Products and Processes, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Tiele Medianeira Rizzetti
- Environmental Technology Post-graduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil; Centre of Excellence in Oleochemical and Biotechnological Products and Processes, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Eduardo Alcayaga Lobo
- Environmental Technology Post-graduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Yixing Sui
- School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
3
|
Onay M, Aladag E. Production and use of Scenedesmus acuminatus biomass in synthetic municipal wastewater for integrated biorefineries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15808-15820. [PMID: 36175727 DOI: 10.1007/s11356-022-23332-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Bioethanol production from algal biomass is a promising alternative for sustainable biofuel production. Algae possess a high photosynthetic capacity and an adaptive ability to thrive under harsh environmental conditions. The potential properties of Scenedesmus acuminatus CCALA 436 were assessed in this research for its bioethanol efficiency, and the effects of growing the algae in wastewater and at different concentrations of mepiquat chloride were studied. Also, pre-treatment efficiencies of different concentrations of calcium oxide were carried out on microalgae biomass. Superoxide dismutase, catalase activity, glutathione, and malondialdehyde contents of microalgae were examined, and the changes in chlorophyll, photoprotective carotenoid contents, and protein concentrations were determined. The results revealed that the maximum sugar and ethanol contents of Scenedesmus acuminatus CCALA 436 were 44.7 ± 1.5% and 20.32 g/L, respectively, for 50% wastewater and mepiquat chloride (2.5 mg/L) after pre-treatment with calcium oxide (0.08%). Additionally, the levels of oxidative enzymes varied depending on the wastewater concentrations. These findings indicate Scenedesmus acuminatus CCALA 436 grown in wastewater and mepiquat chloride can be used for the treatment of wastewater and the production of ethanol and high-value products such as carotenoid.
Collapse
Affiliation(s)
- Melih Onay
- Department of Environmental Engineering, Computational & Experimental Biochemistry Lab, Van Yuzuncu Yil University, 65080, Van, Turkey.
| | - Erdinc Aladag
- Department of Environmental Engineering, Computational & Experimental Biochemistry Lab, Van Yuzuncu Yil University, 65080, Van, Turkey
| |
Collapse
|
4
|
Osman MEH, Abo-Shady AM, Elshobary ME, Abd El-Ghafar MO, Abomohra AEF. Screening of seaweeds for sustainable biofuel recovery through sequential biodiesel and bioethanol production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32481-32493. [PMID: 32506400 DOI: 10.1007/s11356-020-09534-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/29/2020] [Indexed: 02/05/2023]
Abstract
The present study evaluated the sequential biodiesel-bioethanol production from seaweeds. A total of 22 macroalgal species were collected at different seasons and screened based on lipid and carbohydrate contents as well as biomass production. The promising species was selected, based on the relative increase in energy compounds (REEC, %), for further energy conversion. Seasonal and annual biomass yields of the studied species showed significant variations. The rhodophyte Amphiroa compressa and the chlorophyte Ulva intestinalis showed the highest annual biomass yield of 75.2 and 61.5 g m-2 year-1, respectively. However, the highest annual carbohydrate productivity (ACP) and annual lipid productivity (ALP) were recorded for Ulva fasciata and Ulva intestinalis (17.0 and 3.0 g m-2 year-1, respectively). The later was selected for further studies because it showed 14.8% higher REEC value than Ulva fasciata. Saturated fatty acids (SAFs) showed 73.4%, with palmitic acid as a dominant fatty acid (43.8%). Therefore, biodiesel showed high saturation degree, with average degree of unsaturation (ADU) of 0.508. All the measured biodiesel characteristics complied the international standards. The first route of biodiesel production (R1) from Ulva intestinalis showed biodiesel recovery of 32.3 mg g-1 dw. The hydrolysate obtained after saccharification of the whole biomass (R2) and lipid-free biomass (R3) contained 1.22 and 1.15 g L-1, respectively, reducing sugars. However, bioethanol yield from R3 was 0.081 g g-1 dw, which represented 14.1% higher than that of R2. Therefore, application of sequential biofuel production using R3 resulted in gross energy output of 3.44 GJ ton-1 dw, which was 170.9% and 82.0% higher than R1 and R2, respectively. The present study recommended the naturally-grown Ulva intestinalis as a potential feedstock for enhanced energy recovery through sequential biodiesel-bioethanol production.
Collapse
Affiliation(s)
- Mohamed E H Osman
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Atef M Abo-Shady
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mostafa E Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mahasen O Abd El-Ghafar
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Abd El-Fatah Abomohra
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|