1
|
Alkayal NS. Investigation into the Synthetic Strategies of Melamine-Based Porous Polymeric Materials: A Bibliometric Analysis. Polymers (Basel) 2025; 17:868. [PMID: 40219258 PMCID: PMC11991595 DOI: 10.3390/polym17070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/17/2025] [Accepted: 03/10/2025] [Indexed: 04/14/2025] Open
Abstract
Recent years have seen the rapid development of melamine-based porous organic polymers, a new category of porous material. This review paper comprehensively describes the progress and trends of melamine-based porous organic polymers by using bibliometric analysis. A total of 1397 publications published over the previous 15 years were extracted from the Web of Science Core Collection database. Also, cooperation between countries and affiliations and keyword co-occurrence were assessed with the aid of VOS viewer software 1.6.20. The findings suggested that this field of study is now rapidly evolving. From 41 articles in 2009 to 180 articles in 2022, the number of published articles has increased significantly. China was the most productive nation, publishing 863 articles with 61.78% contribution. The Chinese Academy of Sciences was the most productive organization, and Chinese author Qiang Li was the most productive individual. Keyword co-occurrence analysis identified major research hotspots, including the design of high-surface-area materials for adsorption, functionalization strategies to enhance materials' performance, and novel synthesis routes for structural control. Furthermore, this review systematically categorizes synthetic strategies based on the linkage structures between melamine and other building blocks, providing insights into state-of-the-art advancements and future research directions in the field.
Collapse
Affiliation(s)
- Nazeeha S Alkayal
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Li J, Peng X, Zeng P, Shen L, Li M, Guo Y. Removal of sulfonamides by persulfate-based advanced oxidation: A mini review. CHEMOSPHERE 2025; 370:143874. [PMID: 39638125 DOI: 10.1016/j.chemosphere.2024.143874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/25/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Sulfonamides (SAs) are known for their persistence and have become one of the most frequently detected pharmaceuticals and personal care products (PPCPs) in the environments. The widespread presence of SAs in natural waters, wastewater, soil, and sediment has prompted growing concern due to their potential threats to both human health and ecological systems. Persulfate-based advanced oxidation processes (PS-AOPs) have emerged as a promising technology for effectively mitigating the presence of these pollutants in the environment. This review offers a comprehensive overview of the degradation of SAs by PS-AOPs. The various activation methods of persulfate for the purpose of removing SAs are elaborated upon in detail. The factors influencing the removal efficiency of SAs through PS-AOPs is thoroughly discussed. Additionally, the conceivable mechanisms and degradation pathways associated with various types of SAs are discussed. Lastly, existing challenges are identified, and future prospects pertaining to the utilization of PS-AOPs for efficient SA removal are presented.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiangtian Peng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Shenyang University of Technology, Shenyang, 110870, China
| | - Ping Zeng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Liang Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China
| | - Mingyue Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; North China Electric Power University, Beijing, 102206, China
| | - Yanfei Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
3
|
Zakaria DS, Rozi SKM, Halim HNA, Mohamad S, Zheng GK. New porous amine-functionalized biochar-based desiccated coconut waste as efficient CO 2 adsorbents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16309-16327. [PMID: 38315341 DOI: 10.1007/s11356-024-32285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/27/2024] [Indexed: 02/07/2024]
Abstract
Climate change caused by the greenhouse gases CO2 remains a topic of global concern. To mitigate the excessive levels of anthrophonic CO2 in the atmosphere, CO2 capture methods have been developed and among these, adsorption is an especially promising method. This paper presents a series of amine functionalized biochar obtained from desiccated coconut waste (amine-biochar@DCW) for use as CO2 adsorbent. They are ethylenediamine-functionalized biochar@DCW (EDA-biochar@DCW), diethylenetriamine-functionalized biochar@DCW (DETA-biochar@DCW), triethylenetetramine-functionalized biochar@DCW (TETA-biochar@DCW), tetraethylenepentamine-functionalized biochar@DCW (TEPA-biochar@DCW), and pentaethylenehexamine-functionalized biochar@DCW (PEHA-biochar@DCW). The adsorbents were obtained through amine functionalization of biochar and they are characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, Brunauer-Emmett-Teller (BET), and thermogravimetric analysis (TGA). The CO2 adsorption study was conducted isothermally and using a thermogravimetric analyzer. From the results of the characterization analyses, a series of amine-biochar@DCW adsorbents had larger specific surface area in the range of 16.2 m2/g-37.1 m2/g as compare to surface area of pristine DCW (1.34 m2/g). Furthermore, the results showed an increase in C and N contents as well as the appearance of NH stretching, NH bending, CN stretching, and CN bending, suggesting the presence of amine on the surface of biochar@DCW. The CO2 adsorption experiment shows that among the amine modified biochar adsorbents, TETA-biochar@DCW has the highest CO2 adsorption capacity (61.78 mg/g) when using a mass ratio (m:m) of biochar@DCW:TETA (1:2). The adsorption kinetics on the TETA-biochar@DCW was best fitted by the pseudo-second model (R2 = 0.9998), suggesting the adsorption process occurs through chemisorption. Additionally, TETA-biochar@DCW was found to have high selectivity toward CO2 gas and good reusability even after five CO2 adsorption-desorption cycles. The results demonstrate the potential of novel CO2 adsorbents based on amine functionalized on desiccated coconut waste biochar.
Collapse
Affiliation(s)
- Dina Sofiea Zakaria
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi, Arau, 02600, Perlis, Malaysia
| | - Siti Khalijah Mahmad Rozi
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi, Arau, 02600, Perlis, Malaysia.
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.
| | - Hairul Nazirah Abdul Halim
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi, Arau, 02600, Perlis, Malaysia
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Sharifah Mohamad
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ghee Kang Zheng
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi, Arau, 02600, Perlis, Malaysia
| |
Collapse
|
4
|
Tang L, Feng JC, Li C, Liang J, Zhang S, Yang Z. Global occurrence, drivers, and environmental risks of microplastics in marine environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:116961. [PMID: 36542885 DOI: 10.1016/j.jenvman.2022.116961] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
With an increasing quantity of plastic waste being discharged into the oceans, marine microplastic (MP) pollution has received widespread attention. However, the global occurrence characteristics, environmental risks, driving factors, and source-sink relationships remain unclear. In this study, we conducted a meta-analysis based on 165 articles about marine MP pollution. It was found that the global marine MP abundance displayed a significant spatial heterogeneity, and the distribution pattern was influenced by offshore distance, population density, and economic development. The morphological characteristics of MPs showed a significant difference between seawater and marine sediment, and small-size MPs (<1 mm) accounted for the majority of all MPs in the marine environment. The environmental risk assessment revealed that most of the marine MP pollution still remains at low concentrations in the global context, with the Polyurethane (PU), Polyacrylonitrile (PAN), and Polyvinyl chloride (PVC) types of MPs showing high environmental-risk contributions. In addition, land-based waste and marine operations, which were considered to be the dominant sources of marine MPs, primarily aggregated at nearshore submarine areas, in the water column, and in the deep-sea bottom environment. This study suggested that the combination of a meta-analysis and Monte Carlo simulation can provide much valuable information regarding the global occurrence characteristics and environmental risks of marine MPs.
Collapse
Affiliation(s)
- Li Tang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| | - Jing-Chun Feng
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China.
| | - Canrong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| | - Jianzhen Liang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| | - Si Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| |
Collapse
|
5
|
Nanocomposites of Copper Trimesinate and Graphene Oxide as Sorbents for the Solid-Phase Extraction of Organic Dyes. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6070215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A nanocomposite based on graphene oxide and copper trimesinate was obtained by the in situ method. The samples have permanent porosity and a microporous structure with a large surface area corresponding to the adsorption type I. A study of the adsorption properties of the obtained composites with respect to organic dyes (malachite green, indigo carmine, brilliant green, Rose Bengal, crystal violet) showed that adsorption largely depends on the content of graphene oxide in the composites. The complex is an effective sorbent for the extraction of cationic and neutral organic dyes when the content of graphene oxide in the nanocomposite is 20% of the calculated copper trimesinate due to electrostatic forces of interaction. For anionic dyes, the maximum adsorption is achieved when using a composite containing 5% graphene oxide due to the predominance of physical sorption. Experimental results show that the obtained sorbent can be used for extraction in a wide pH range, illustrating the excellent pH window offered by this adsorbent. Kinetics data were properly fitted with the pseudo-second-order model. Equilibrium data were best correlated with the Freundlich model. The process was endothermic and spontaneous in nature. The composite makes it possible to achieve a maximum sorption of 393 mg/g, which is a sufficiently high value for the absorption of dyes.
Collapse
|
6
|
Ye W, Yang W. Exploring metal-organic frameworks in electrochemistry by a bibliometric analysis. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Hamedi A, Anceschi A, Patrucco A, Hasanzadeh M. A γ-cyclodextrin-based metal-organic framework (γ-CD-MOF): a review of recent advances for drug delivery application. J Drug Target 2021; 30:381-393. [PMID: 34847807 DOI: 10.1080/1061186x.2021.2012683] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The relatively new class of porous material known as metal-organic framework (MOF) exhibits unique features such as high specific surface area, controlled porosity and high chemical stability. Many green synthesis approaches for MOFs have been proposed using biocompatible metal ions and linkers to maximise their use in pharmaceutical fields. The involvement of biomolecules as an organic ligand can act promising because of their biocompatibility. Recently, cyclodextrin metal-organic frameworks (CD-MOFs) represent environmentally friendly and biocompatible characteristics that lead them to biomedical applications. They are regarded as a promising nanocarrier for drug delivery, due to their high specific surface area, high porosity, tuneable chemical structure, and easy fabrication. This review focuses on the unique properties of CD-MOF and the recent advances in methods for the synthesis of these porous structures with emphasis on particle size. Then, the state-of-the-art drug delivery systems with various drugs along with the performance of CD-MOFs as efficient drug delivery systems are presented. Particular emphasis is laid on researches investigating the drug delivery potential of γ-CD-MOF.
Collapse
Affiliation(s)
- Asma Hamedi
- Department of Physics, Faculty of Science, Yazd University, Yazd, Iran
| | - Anastasia Anceschi
- CNR-STIIMA, Italian National Research Council, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Biella (BI), Italy
| | - Alessia Patrucco
- CNR-STIIMA, Italian National Research Council, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Biella (BI), Italy
| | | |
Collapse
|
8
|
Uflyand IE, Zhinzhilo VA, Nikolaevskaya VO, Kharisov BI, González CMO, Kharissova OV. Recent strategies to improve MOF performance in solid phase extraction of organic dyes. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Zhang Y, Yu Q, Li J. Bioenergy research under climate change: a bibliometric analysis from a country perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26427-26440. [PMID: 33484456 DOI: 10.1007/s11356-021-12448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Development of bioenergy will be a key component for meeting increasing energy demands while mitigating global warming. With the intent of identifying current topics of major interest and development of research directions in the field of bioenergy under climate change, we conducted a bibliometric analysis and network analysis from a country perspective based on 3050 articles published since 1999 derived from the Scopus database. The results indicated that USA, UK, and Germany led other countries in terms of number of publications (1006, 366, and 280 articles, respectively) and h-index (greater than 50) in this research area. The USA has also produced a large number of articles in highly respected journals. Compared with developed countries, some developing countries (e.g., China, India, and Brazil) have a larger proportion of publications which are cited less than 10 times and researchers who have academic age of 1 year. The number of publications dealing with some of these research topics coming from developing countries has lagged behind the number of similar publications coming from developed countries. In spite of this, research on sustainable energy systems is still needed for developing countries to further establish feasible systems that can effectively promote global economic development and strengthen climate change mitigation efforts.
Collapse
Affiliation(s)
- Yajie Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
| | - Qiang Yu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China.
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China.
| | - Juan Li
- Chinese Research Academy of Environmental Sciences, Chaoyang District, Beijing, China.
| |
Collapse
|
10
|
Khoshakhlagh AH, Beygzadeh M, Golbabaei F, Saadati Z, Carrasco-Marín F, Shahtaheri SJ. Isotherm, kinetic, and thermodynamic studies for dynamic adsorption of toluene in gas phase onto porous Fe-MIL-101/OAC composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44022-44035. [PMID: 32748351 DOI: 10.1007/s11356-020-10297-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
In the present paper, micro-mesoporous Fe-MIL-101/OAC composite using in situ incorporation of Fe-MIL-101 into oxidized activated carbon was synthesized and characterized by XRD, FT-IR, SEM, EDS, and BET techniques. The adsorption performances of toluene onto adsorbents in the gas phase were studied using a laboratory-scale dynamic adsorption system under moist ambience. The toluene adsorption capacity of Fe-MIL-101/OAC composite and Fe-MIL-101 were 127 and 97.6 mg g-1, severally. Results revealed that the larger pores in micro-mesoporous Fe-MIL-101/OAC enhanced the molecular diffusion rate. The findings indicated that micro-mesoporous structures played key roles in the capture of toluene molecules. The initial toluene concentration positively affected on toluene adsorption capacity while temperature and humidity negatively affected on toluene adsorption capacity. The Langmuir model and the pseudo-second-order kinetics model described better adsorption process of Fe-MIL-101/OAC composite. Thermodynamic findings determined that toluene adsorption over Fe-MIL-101/OAC was spontaneous, exothermic physisorption. The regeneration of the composite was still up to 72.6% after six cycles. The micro-mesoporous Fe-MIL-101/OAC composite proposes a promising support for the high toluene removal for future. Graphical abstract.
Collapse
Affiliation(s)
- Amir Hossein Khoshakhlagh
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Beygzadeh
- Department of Energy, Materials & Energy Research Center, P.O. Box: 14155-4777, Tehran, Iran.
| | - Farideh Golbabaei
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Saadati
- Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
| | - Francisco Carrasco-Marín
- Carbon Materials Research Group, Faculty of Science, University of Granada, Avda. Fuente Nueva s/n, Granada, Spain
| | - Seyed Jamaleddin Shahtaheri
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Institute for environmental research, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|