1
|
Navalho S, Ferrer-Ledo N, Barbosa MJ, Varela J. Nannochloropsis Lipids and Polyunsaturated Fatty Acids: Potential Applications and Strain Improvement. Mar Drugs 2025; 23:128. [PMID: 40137314 PMCID: PMC11943726 DOI: 10.3390/md23030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
The genus Nannochloropsis comprises a group of oleaginous microalgae that accumulate polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA). These molecules are essential for the correct development and health of humans and animals. Thanks to their attractive lipid profile, Nannochloropsis is mainly marketed as a feed ingredient in aquaculture. In microalgae of this genus, contents and cellular location of PUFAs are affected by the growth conditions and gene expression. Strain improvement through non-recombinant approaches can generate more productive strains and efficient bioprocesses for PUFA production. Nevertheless, the lack of specific markers, detection methods, and selective pressure for isolating such mutants remains a bottleneck in classical mutagenesis approaches or lipid quality assessment during cultivation. This review encompasses the importance of PUFAs and lipid classes from Nannochloropsis species and their potential applications. Additionally, a revision of the different ways to increase PUFA content in Nannochloropsis sp. by using classical mutagenesis and adaptive laboratory evolution is also presented, as well as various methods to label and quantify lipids and PUFAs from Nannochloropsis microalgae.
Collapse
Affiliation(s)
- Sofia Navalho
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (N.F.-L.); (M.J.B.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Narcis Ferrer-Ledo
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (N.F.-L.); (M.J.B.)
| | - Maria J. Barbosa
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (N.F.-L.); (M.J.B.)
| | - João Varela
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
2
|
Yun HS, Kim DH, Kim JG, Kim YS, Yoon HS. The microbial communities (bacteria, algae, zooplankton, and fungi) improved biofloc technology including the nitrogen-related material cycle in Litopenaeus vannamei farms. Front Bioeng Biotechnol 2022; 10:883522. [PMID: 36507271 PMCID: PMC9727081 DOI: 10.3389/fbioe.2022.883522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Microbes are essential in biofloc technology for controlling nitrogen levels in water. The composition and function of microorganisms with biofloc systems were reported; however, data on microorganisms other than bacteria, such as algae (which are essential in the nitrogen cycle) and zooplankton (which are bacterial and algal predators), remain limited. The microbial communities (including bacteria, algae, zooplankton, and fungi) were investigated in shrimp farms using biofloc technology. Using Illumina MiSeq sequencing, the V4 region of 18S rRNA and the V3-V4 region of 16S rRNA were utilized for the analysis of the eukaryotic and prokaryotic microbial communities. As a result, it was found that the biofloc in the shrimp farm consisted of 48.73%-73.04% eukaryotic organisms and 26.96%-51.27% prokaryotic organisms. In these shrimp farms, prokaryotic microbial communities had higher specie richness and diversity than eukaryotic microbial communities. However, the eukaryotic microbial communities were more abundant than their prokaryotic counterparts, while algae and zooplankton dominated them. It was discovered that the structures of the microbial communities in the shrimp farms seemed to depend on the effects of predation by zooplankton and other related organisms. The results provided the nitrogen cycle in biofloc systems by the algal and bacterial groups in microbial communities.
Collapse
Affiliation(s)
- Hyun-Sik Yun
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Dong-Hyun Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Jong-Guk Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea,School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea,*Correspondence: Jong-Guk Kim, ; Young-Saeng Kim, ; Ho-Sung Yoon,
| | - Young-Saeng Kim
- Research Institute of Ulleung-do & Dok-do, Kyungpook National University, Daegu, South Korea,*Correspondence: Jong-Guk Kim, ; Young-Saeng Kim, ; Ho-Sung Yoon,
| | - Ho-Sung Yoon
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea,School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea,Advanced Bio-Resource Research Center, Kyungpook National University, Daegu, South Korea,*Correspondence: Jong-Guk Kim, ; Young-Saeng Kim, ; Ho-Sung Yoon,
| |
Collapse
|
3
|
Cultivation and Biorefinery of Microalgae (Chlorella sp.) for Producing Biofuels and Other Byproducts: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su132313480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microalgae-based carbon dioxide (CO2) biofixation and biorefinery are the most efficient methods of biological CO2 reduction and reutilization. The diversification and high-value byproducts of microalgal biomass, known as microalgae-based biorefinery, are considered the most promising platforms for the sustainable development of energy and the environment, in addition to the improvement and integration of microalgal cultivation, scale-up, harvest, and extraction technologies. In this review, the factors influencing CO2 biofixation by microalgae, including microalgal strains, flue gas, wastewater, light, pH, temperature, and microalgae cultivation systems are summarized. Moreover, the biorefinery of Chlorella biomass for producing biofuels and its byproducts, such as fine chemicals, feed additives, and high-value products, are also discussed. The technical and economic assessments (TEAs) and life cycle assessments (LCAs) are introduced to evaluate the sustainability of microalgae CO2 fixation technology. This review provides detailed insights on the adjusted factors of microalgal cultivation to establish sustainable biological CO2 fixation technology, and the diversified applications of microalgal biomass in biorefinery. The economic and environmental sustainability, and the limitations and needs of microalgal CO2 fixation, are discussed. Finally, future research directions are provided for CO2 reduction by microalgae.
Collapse
|
4
|
Mohseni A, Fan L, Roddick FA. Impact of microalgae species and solution salinity on algal treatment of wastewater reverse osmosis concentrate. CHEMOSPHERE 2021; 285:131487. [PMID: 34273703 DOI: 10.1016/j.chemosphere.2021.131487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Six common microalgal species, including freshwater microalgae Scenedesmus abundans, Chlorella vulgaris, Chlamydomonas reinhardtii and Coelastrum microporum, and marine microalgae Nannochloropsis salina and Dunaliella tertiolecta, were tested in batch treatment to identify the most promising species for remediating a municipal wastewater reverse osmosis concentrate (ROC). Selected species were then studied at different ROC salinity levels (5, 10, and 15 g TDS/L) in semi-continuous treatment to evaluate their potential for nutrient remediation, and biogas production through anaerobic digestion. S. abundans, C. vulgaris, and N. salina showed higher potential for growth and nutrient remediation under salinity stress. Further tests revealed that N. salina adapted well to ROC conditions, and S. abundans could grow better and had higher tolerance to the elevated salinity than C. vulgaris. S. abundans and N. salina performed better for removing nutrients and organic matter (11.5-18 mg/L/d TN, 7.1-8.2 mg/L/d TP, and 8.6-12.4 mg/L/d DOC). Increasing salinity led to growth inhibition and N uptake reduction for freshwater species but had no significant effect on TP removal. Biochemical methane potential tests showed the algal biomass produced a significant amount of methane (e.g., up to 422 mL CH4/g VS for N. salina), suggesting the algae generated from the ROC treatment could produce significant amounts of energy through anaerobic digestion without the need for pretreatment. This study showed the environmental and economic potential of the algal system for future applications.
Collapse
Affiliation(s)
- Arash Mohseni
- WETT Research Centre, School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Linhua Fan
- WETT Research Centre, School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| | - Felicity A Roddick
- WETT Research Centre, School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| |
Collapse
|
5
|
Ben Hlima H, Karray A, Dammak M, Elleuch F, Michaud P, Fendri I, Abdelkafi S. Production and structure prediction of amylases from Chlorella vulgaris. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51046-51059. [PMID: 33973124 DOI: 10.1007/s11356-021-14357-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Amylases are enzymes required for starch degradation and are naturally produced by many microorganisms. These enzymes are used in several fields such as food processing, beverage, and medicine as well as in the formulation of enzymatic detergents proving their significance in modern biotechnology. In this study, a three-stage growth mode was applied to enhance starch production and amylase detection from Chlorella vulgaris. Stress conditions applied in the second stage of cultivation led to an accumulation of proteins (75% DW) and starch (21% DW) and a decrease in biomass. Amylase activities were detected and they showed high production levels especially on day 3 (35 U/ml) and day 5 (22.5 U/ml) of the second and third stages, respectively. The bioinformatic tools used to seek amylase protein sequences from TSA database of C. vulgaris revealed 7 putative genes encoding for 4 α-amylases, 2 β-amylases, and 1 isoamylase. An in silico investigation showed that these proteins are different in their lengths as well as in their cellular localizations and oligomeric states though they share common features like CSRs of GH13 family or active site of GH14 family. In brief, this study allowed for the production and in silico characterization of amylases from C. vulgaris.
Collapse
Affiliation(s)
- Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Aida Karray
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3018, Sfax, Tunisia
| | - Mouna Dammak
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Fatma Elleuch
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoire de Biotechnologie des Plantes Appliquée à l'Amélioration des Plantes Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.
| |
Collapse
|
6
|
Mohseni A, Kube M, Fan L, Roddick FA. Treatment of wastewater reverse osmosis concentrate using alginate-immobilised microalgae: Integrated impact of solution conditions on algal bead performance. CHEMOSPHERE 2021; 276:130028. [PMID: 33690032 DOI: 10.1016/j.chemosphere.2021.130028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/06/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Alginate can be used for entrapment of microalgal cells in gel beads to achieve high-rate treatment of wastewater and can overcome the difficulties of cell separation that would occur in suspended microalgae treatment systems. The potential for alginate beads to disintegrate in the presence of high ion concentrations could limit the use of alginate entrapment for treating municipal wastewater reverse osmosis concentrate (ROC). The combined effect of the pH, alkalinity, and salinity of the ROC that impact the physical stability, chemical characteristics, biomass production, and nutrient removal performance of alginate-entrapped Chlorella vulgaris for treating the ROC was investigated. Water adsorption resulting from the loss of calcium from the alginate matrix was the initiating cause of reduction of the algal bead stability. The combination of alkalinity >400 mg/L and pH ≥9.5 led to a >65% reduction in compressive strength and thus disintegration of beads during ROC treatment. However, alginate beads of C. vulgaris were sufficiently stable and were capable of nutrient remediation (up to 100% TP and 85% TN per treatment cycle of 48 h over a 10-day period) and biomass production (up to 340 mg/L/d) when salinity, pH, and alkalinity levels were <8 g TDS/L, 7-9.5, and <400 mg/L, respectively. Empirical models that were developed and validated could enable the prediction of the performance of the algal beads for various ROC compositions. This study enhances the insight and decision-making regarding the feasibility of the alginate-immobilised microalgal system for treating municipal wastewater ROC streams.
Collapse
Affiliation(s)
- Arash Mohseni
- WETT Research Centre and School of Engineering, RMIT University, Australia
| | - Matthew Kube
- WETT Research Centre and School of Engineering, RMIT University, Australia
| | - Linhua Fan
- WETT Research Centre and School of Engineering, RMIT University, Australia.
| | - Felicity A Roddick
- WETT Research Centre and School of Engineering, RMIT University, Australia
| |
Collapse
|
7
|
Encarnação T, Santos D, Ferreira S, Valente AJM, Pereira JC, Campos MG, Burrows HD, Pais AACC. Removal of Imidacloprid from Water by Microalgae Nannochloropsis sp. and Its Determination by a Validated RP-HPLC Method. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:131-139. [PMID: 33847799 DOI: 10.1007/s00128-021-03228-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
The large-scale use of pesticides is one of the main causes of the dramatic degradation of our environment. Pesticides such as imidacloprid (IMID) have been linked to declines in bee health and toxicity to other beneficial insects. They pose a threat to human health due to their persistence in the environment and accumulation in the food chain. Therefore, it is essential to test possible environmentally-friendly solutions for their elimination. The present study evaluates the efficiency of microalgae Nannochloropsis sp. for the removal of IMID from synthetic wastewater. The influence of aeration, light, and the presence of UV radiation on the degradation of IMID were factors considered in the study. A rapid RP-HPLC method was developed and validated for the analysis and quantification of IMID in the context of bioremediation with microalgae. Nannochloropsis sp. removed 4.39 µg mL-1 from an initial content of 9.59 µg mL-1 (reaching approximately 50%) of IMID in the first 20 h. This study demonstrated that the removal of IMID by the marine microalgae Nannochloropsis sp. is both effective and light-dependent.
Collapse
Affiliation(s)
- Telma Encarnação
- CQC, Department of Chemistry, University of Coimbra, Coimbra, Portugal.
| | - Daniel Santos
- CQC, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Simone Ferreira
- CQC, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Artur J M Valente
- CQC, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - J C Pereira
- CQC, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - M G Campos
- CQC, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Hugh D Burrows
- CQC, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | | |
Collapse
|
8
|
|
9
|
Zhu Q, Wu L, Li G, Li X, Zhao C, Du C, Wang F, Li W, Zhang L. A novel of transforming wastewater pollution into resources for desertification control by sand-consolidating cyanobacteria, Scytonema javanicum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13861-13872. [PMID: 33200387 DOI: 10.1007/s11356-020-11553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
Cultivation of desert cyanobacteria in wastewater can lead to the optimal redistribution of regional resources and is likely to solve two global problems, i.e., wastewater pollution and desertification. However, the potential of using wastewater instead of traditional artificial culture media to cultivate sand-consolidating cyanobacteria for desert management is not well understood. This study compares undistilled and distilled wastewater with an artificial culture medium (BG110) to explore the potential of wastewater as a replacement culture medium for Scytonema javanicum. The results show that the photosynthetic activity (Fv/Fm) of S. javanicum was inhibited in the undistilled wastewater and was lower than that in distilled water and the culture medium. The lowest Chl-a concentration and the highest concentration in BG110 were found in distilled wastewater. However, there was no difference in the biomass (dry weight) between the undistilled wastewater and BG110 at the end of the experiment. After long-term dry storage of the biomass collected after cultivation, there was no difference in the photosynthetic recovery between S. javanicum cultivated in undistilled wastewater and that cultivated in BG110. Accordingly, although wastewater depressed the Chl-a content, it did not affect the biomass accumulation and subsequent photosynthetic recovery after long-term storage. The results reveal the significant potential of cultivating sand-consolidating cyanobacterium in wastewater and using this technology as a new nutrient redistribution method in human settlements and desert areas.
Collapse
Affiliation(s)
- Qiuheng Zhu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Li Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Guowen Li
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoguang Li
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen Zhao
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Caili Du
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Fan Wang
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wei Li
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lieyu Zhang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
10
|
Mu X, Zhang S, Han B, Hua Z, Fu D, Li P. Impacts of water flow on epiphytic microbes and nutrients removal in constructed wetlands dominated by Vallisneria natans with decreasing temperature. BIORESOURCE TECHNOLOGY 2020; 318:124058. [PMID: 32905946 DOI: 10.1016/j.biortech.2020.124058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
The mechanisms behind water flow on contaminant removal by a submerged macrophyte-biofilm complex in surface flow wetlands remain to be fully elucidated. In this study, water flow (2.02 ~ 2.12 or 4.06 ~ 4.5 L s-1; hydraulic retention time, 7d) significantly enhanced NH4+-N and COD but inhibited TN and TP removal compared to the static ones. No more than 30% of TN and TP were assimilated by V. natans-biofilm complex in wetland system. Water flow remarkably affected alpha-diversity of microbial community in epiphytic biofilm. As revealed by beta-diversity analysis, turnover played greater contribution to the total dissimilarity than nestedness. Network analyses revealed that the microbial interactions including predation, symbiosis and competition in epiphytic biofilms were much more intensive in the Sept.- Oct. than the Nov.-Dec group. Redundancy and Mantel correlation analyses revealed that temperature played a key role in determining microbial community structure, especially for bacteria.
Collapse
Affiliation(s)
- Xiaoying Mu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China.
| | - Bing Han
- Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Dongwang Fu
- Nanjing Water Planning and Designing Institute. Corp. Ltd, China
| | - Ping Li
- Nanjing Water Planning and Designing Institute. Corp. Ltd, China
| |
Collapse
|