1
|
Zhang X, He L, Guo J, Liu F, Tong M. Modification of sand filtration system with biochar/zero valent iron-biochar for the simultaneous removal of algal cells and microcystin-LR. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138068. [PMID: 40157183 DOI: 10.1016/j.jhazmat.2025.138068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
High-density algal cells and the released algal toxins during harmful algal blooms cannot be effectively removed by traditional sand filtration systems. In this study, bare sand filtration columns were modified by different mass ratios of biochar (synthesized at different pyrolysis temperatures) and used to simultaneously capture algal cells and microcystins from water. We found that the addition of 2 wt% biochar synthesized at 700℃ could effectively remove Microcystis aeruginosa and Chlorella vulgaris cells under both slow and fast filtration flow conditions, and remove the released microcystin-LR in suspension. Effective removal performance with the coexistence of natural organic matters, in real water samples, during 3 transport-elution cycles and continuous operation for 50 pore volumes was also achieved by biochar-modified filtration system. The high algal adsorption capacity due to the wrinkled structure and the less negative charge of biochar contributed to the enhanced removal performance. Moreover, using zero valent iron (ZVI) loaded biochar to modify sand columns would effectively inactivate and inhibit the regrowth of retained algal cells. The results showed that as one type of inexpensive and readily available bio-materials, biochar/ZVI-biochar could be used to modify the sand filtration system for the effective removal of algal cells and toxins from water.
Collapse
Affiliation(s)
- Xiangwei Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Lei He
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Jia Guo
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Fuyang Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China.
| |
Collapse
|
2
|
Sung YJ, Yu BS, Yang HE, Kim DH, Lee JY, Sim SJ. Microalgae-derived hydrogen production towards low carbon emissions via large-scale outdoor systems. BIORESOURCE TECHNOLOGY 2022; 364:128134. [PMID: 36252755 DOI: 10.1016/j.biortech.2022.128134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen as a clean fuel is receiving attention because it generates only water and a small amount of nitrogen oxide upon combustion. Biohydrogen production using microalgae is considered to be a highly promising carbon-neutral technology because it can secure renewable energy while efficiently reducing CO2 emissions. However, previous studies have mainly focused on improving the biological performance of microalgae; these approaches have struggled to achieve breakthroughs in commercialization because they do not heavily consider the complexity of the entire production process with microalgae, including large-scale cultivation, biomass harvest, and biomass storage. This work presents an in-depth analysis of the state-of-the-art technologies focused on large-scale cultivation systems with efficient downstream processes. Considering the individual processes of biohydrogen production, strategies are discussed to minimize carbon emissions and improve productivity simultaneously. A comprehensive understanding of microalgae-derived biohydrogen production suggests future directions for realizing environmental and economic sustainability.
Collapse
Affiliation(s)
- Young Joon Sung
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, Republic of Korea
| | - Byung Sun Yu
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ha Eun Yang
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dong Hoon Kim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ju Yeon Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
3
|
Giannuzzi L, Bacciadone J, Salerno GL. A Promising Use of Trimethyl Chitosan for Removing Microcystis aeruginosa in Water Treatment Processes. Microorganisms 2022; 10:microorganisms10102052. [PMID: 36296328 PMCID: PMC9610100 DOI: 10.3390/microorganisms10102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The increase in cyanobacterial blooms linked to climate change and the eutrophication of water bodies is a global concern. The harmful cyanobacterium Microcystis aeruginosa is one of the most common bloom-forming species whose removal from fresh water and, in particular, from that used for water treatment processes, remains a crucial goal. Different biodegradable and environmentally friendly coagulants/flocculants have been assayed, with chitosan showing a very good performance. However, chitosan in its original form is of limited applicability since it is only soluble in acid solution. The objective of this work was therefore to test the coagulant/flocculant capacity of trimethylchitosan (TMC), a chitosan derivative produced from residues of the fishing industry. TMC has a constitutively net positive charge enabling it to remain in solution regardless of the pH. Results show that even at alkaline pHs, common during cyanobacterial blooms, TMC is effective in removing buoyant cyanobacteria from the water column, both in test tube and Jar-Test experiments. Cell integrity was confirmed by fluorescent stain and electron microscopy. Our findings lead us to conclude that the use of TMC to remove bloom cells early in the treatment of drinking water is both feasible and promising.
Collapse
Affiliation(s)
- Leda Giannuzzi
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA-CONICET), La Plata 1900, Argentina
- Correspondence:
| | - Julián Bacciadone
- Fundación Para Investigaciones Biológicas Aplicadas (FIBA), Vieytes 3103, Mar del Plata 7600, Argentina
| | - Graciela L. Salerno
- Fundación Para Investigaciones Biológicas Aplicadas (FIBA), Vieytes 3103, Mar del Plata 7600, Argentina
| |
Collapse
|
4
|
Long Y, Li H, Jin H, Ni J. Electrochemical elimination of Microcystis aeruginosa with boron-doped diamond anode in different electrolyte systems: chemical and biological mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27677-27687. [PMID: 34984609 DOI: 10.1007/s11356-021-18254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The chemical and biological mechanisms of electrochemical elimination of Microcystis aeruginosa (M. aeruginosa) using boron-doped diamond (BDD) anode were comparatively explored in three different electrolytes (chloride, sulfate, and phosphate solutions). The most efficient elimination of M. aeruginosa was observed in chloride solution, which was attributed to the greatest total long-lived oxidants from the favorable formation of active chlorine. Moreover, the high permeability of active chlorine resulted in profound intracellular damages to chlorophyll-a, microcystin-LR (MC-LR), superoxide dismutase (SOD) enzyme, and DNA in the chloride system. The change of membrane permeability and degradation of the released MC-LR induced by active chlorine were further confirmed by the increase of extracellular MC-LR in the initial 5 min and a complete decay in the subsequent 15 min, while the change in morphology of algae cells was insignificant from SEM images. In sulfate and phosphate electrolytes, membrane damages were much more pronounced based on lipid peroxidation observation, although changes in cell morphology was found more significant in phosphate system. The higher concentrations of oxidants (·OH, O3, H2O2, S2O82-) generated in sulfate than in phosphate solution explained the greater efficiency of electrochemical elimination of M. aeruginosa in the sulfate electrolyte in terms of changes of cell density, OD680, chlorophyll-a, MC-LR, lipids, SOD enzyme, and DNA.
Collapse
Affiliation(s)
- Yujiao Long
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, People's Republic of China
| | - Hongna Li
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Hongmei Jin
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Jinren Ni
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
5
|
Xu K, Zou X, Chang W, Qu Y, Li Y. Microalgae harvesting technique using ballasted flotation: A review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119439] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|