1
|
Alminderej FM, Younis AM, Albadri AE, El-Sayed WA, El-Ghoul Y, Ali R, Mohamed AM, Saleh SM. The superior adsorption capacity of phenol from aqueous solution using Modified Date Palm Nanomaterials: A performance and kinetic study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
2
|
Mehmood S, Mahmood M, Núñez-Delgado A, Alatalo JM, Elrys AS, Rizwan M, Weng J, Li W, Ahmed W. A green method for removing chromium (VI) from aqueous systems using novel silicon nanoparticles: Adsorption and interaction mechanisms. ENVIRONMENTAL RESEARCH 2022; 213:113614. [PMID: 35710023 DOI: 10.1016/j.envres.2022.113614] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
In the present study, we used the horsetail plant (Equisetum arvense) as a green source to synthesize silicon nanoparticles (GS-SiNPs), considering that it could be an effective adsorbent for removing chromium (Cr (VI)) from aqueous solutions. The characterization of GS-SiNPs was performed via Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photo electron spectroscopy (XPS) techniques. The batch test results of Cr (VI) adsorption on GS-SiNPs showed a high adsorption capacity, reaching 87.9% of the amount added. The pseudo-second order kinetic model was able to comprehensively explain the adsorption kinetics and provided a maximum Cr (VI) adsorption capacity (Qe) of 3.28 mg g-1 (R2 = 90.68), indicating fast initial adsorption by the diffusion process. The Langmuir isotherm model fitted the experimental data, and accurately simulated the adsorption of Cr (VI) on GS-SiNPs (R2 = 97.79). FTIR and XPS spectroscopy gave further confirmation that the main mechanism was ion exchange with Cr and surface complexation through -OH and -COOH. Overall, the results of the research can be of relevance as regards a green and new alternative for the removal of Cr (VI) pollution from affected environments.
Collapse
Affiliation(s)
- Sajid Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China
| | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, Campus Univ. s/n, 27002, Lugo, Univ. Santiago de Compostela, Spain
| | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Ahmed S Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Muhammad Rizwan
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, 2713, Doha, Qatar
| | - Jiechang Weng
- Hainan Provincial Ecological and Environmental Monitoring Center, 571126, China
| | - Weidong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China.
| | - Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China.
| |
Collapse
|
3
|
Vishali S, Mullai P, Mahboob S, Al-Ghanim K, Sivasankar A. Elucidation the influence of design variables on coagulation-flocculation mechanisms in the lab-scale bio-coagulation on toxic industrial effluent treatment. ENVIRONMENTAL RESEARCH 2022; 212:113224. [PMID: 35405132 DOI: 10.1016/j.envres.2022.113224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Bio-coagulants are environmentally friendly substances that have shown potential in removing organic and inorganic contaminants from wastewater from the Imitation Paint Industry. Under the optimized conditions, the use of the three bio-coagulants (of plant origin), Strychnos potatorum, Cactus opuntia and Portunus sanguinolentus (crab) shell (of animal origin) were evaluated, and their removal mechanism was based on kinetic models and adsorption isotherms. The error analysis method was used to find the best isotherm fit. In addition, the kinetic model parameters showed the absence of chemisorption and confirmed the existence of pore diffusion. The interaction between coagulant and pollutant, the type, homogeneity and intensity of the coagulation process, the pollutant absorption capacity of the coagulant were evaluated with the aid of the adsorption isotherm models. From the Pseudo first-order kinetic model an equilibrium pollutant uptake (mg/g) was marked as 598, 554 and 597 for Strychnos potatorum, Cactus opuntia and Portunus sanguinolentus respectively. The better affinity between the pollutants and the bio coagulants were observed through the lower values of Langmuir isotherm constant kL. The adsorption intensity from Freundlich model (nF) were ranged between 1 and 10 for all the listed coagulants, which revealed the physisorption behavior and heterogeneous mechanism of removal. With these results, it would be possible to conduct scale-up studies to adopt the process for practical systems.
Collapse
Affiliation(s)
- S Vishali
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India.
| | - P Mullai
- Department of Chemical Engineering, Annamalai University, Chidambaram, 608 002, India
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - K Al-Ghanim
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Annamalai Sivasankar
- School of Architecture, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|