1
|
Yang S, Ning Y, Li H, Zhu Y. Effects of Priestia aryabhattai on Phosphorus Fraction and Implications for Ecoremediating Cd-Contaminated Farmland with Plant-Microbe Technology. PLANTS (BASEL, SWITZERLAND) 2024; 13:268. [PMID: 38256821 PMCID: PMC10818761 DOI: 10.3390/plants13020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
The application of phosphate-solubilizing bacteria has been widely studied in remediating Cd-contaminated soil, but only a few studies have reported on the interaction of P and Cd as well as the microbiological mechanisms with phosphate-solubilizing bacteria in the soil because the activity of phosphate-solubilizing bacteria is easily inhibited by the toxicity of Cd. This paper investigates the phosphorus solubilization ability of Priestia aryabhattai domesticated under the stress of Cd, which was conducted in a soil experiment with the addition of Cd at different concentrations. The results show that the content of Ca2-P increased by 5.12-19.84%, and the content of labile organic phosphorus (LOP) increased by 3.03-8.42% after the addition of Priestia aryabhattai to the unsterilized soil. The content of available Cd decreased by 3.82% in the soil with heavy Cd contamination. Priestia aryabhattai has a certain resistance to Cd, and its relative abundance increased with the increased Cd concentration. The contents of Ca2-P and LOP in the soil had a strong positive correlation with the content of Olsen-P (p < 0.01), while the content of available Cd was negatively correlated with the contents of Olsen-P, Ca2-P, and LOP (p < 0.05). Priestia aryabhattai inhibits the transport of Cd, facilitates the conversion of low-activity P and insoluble P to Ca2-P and LOP in the soil, and increases the bioavailability and seasonal utilization of P in the soil, showing great potential in ecoremediating Cd-contaminated farmland soil with plant-microbe-combined technology.
Collapse
Affiliation(s)
- Shenghan Yang
- Institute of Loess Plateau, Shanxi University, Taiyuan 030031, China;
- School of Environment Science and Resources, Shanxi University, Taiyuan 030031, China;
| | - Yiru Ning
- School of Environment Science and Resources, Shanxi University, Taiyuan 030031, China;
- Institute of Resources and Environment Engineering, Shanxi University, Taiyuan 030031, China
| | - Hua Li
- School of Environment Science and Resources, Shanxi University, Taiyuan 030031, China;
- Shanxi Laboratory for Yellow River, Taiyuan 030031, China
| | - Yuen Zhu
- School of Environment Science and Resources, Shanxi University, Taiyuan 030031, China;
- Shanxi Laboratory for Yellow River, Taiyuan 030031, China
| |
Collapse
|
2
|
Cong M, Hu Y, Sun X, Yan H, Yu G, Tang G, Chen S, Xu W, Jia H. Long-term effects of biochar application on the growth and physiological characteristics of maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1172425. [PMID: 37409290 PMCID: PMC10319354 DOI: 10.3389/fpls.2023.1172425] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/23/2023] [Indexed: 07/07/2023]
Abstract
Biochar, as a soil conditioner, has been widely used to promote the growth of maize, but most of the current research is short-term experiments, which limits the research on the long-term effects of biochar, especially the physiological mechanism of biochar on maize growth in aeolian sandy soil is still unclear. Here, we set up two groups of pot experiments, respectively after the new biochar application and one-time biochar application seven years ago (CK: 0 t ha-1, C1: 15.75 t ha-1, C2: 31.50 t ha-1, C3: 63.00 t ha-1, C4: 126.00 t ha-1), and planted with maize. Subsequently, samples were collected at different periods to explore the effect of biochar on maize growth physiology and its after-effect. Results showed that the plant height, biomass, and yield of maize showed the highest rates of increase at the application rate of 31.50 t ha-1 biochar, with 22.22% increase in biomass and 8.46% increase in yield compared with control under the new application treatment. Meanwhile, the plant height and biomass of maize increased gradually with the increase of biochar application under the one-time biochar application seven years ago treatment (increased by 4.13%-14.91% and 13.83%-58.39% compared with control). Interestingly, the changes in SPAD value (leaf greenness), soluble sugar and soluble protein contents in maize leaves corresponded with the trend of maize growth. Conversely, the changes of malondialdehyde (MDA), proline (PRO), catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) manifested an opposite trend to the growth of maize. In conclusion, 31.50 t ha-1 biochar application can promote the growth of maize by inducing changes in its physiological and biochemical characteristics, but excessive biochar application rates ranging from 63.00-126.00 t ha-1 inhibited the growth of maize. After seven years of field aging, the inhibitory effect of 63.00-126.00 t ha-1 biochar amount on maize growth disappeared and changed to promoting effect.
Collapse
Affiliation(s)
- Mengfei Cong
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
| | - Yang Hu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
| | - Xia Sun
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi, China
| | - Han Yan
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
| | - Guangling Yu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
| | - Guangmu Tang
- Institute of Soil and Fertilizer and Agricultural Sparing Water, Xinjiang Academy of Agricultural Science, Urumqi, China
- Key Laboratory of Saline-alkali Soil Improvement and Utilization (Saline-alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Shuhuang Chen
- Institute of Soil and Fertilizer and Agricultural Sparing Water, Xinjiang Academy of Agricultural Science, Urumqi, China
- Key Laboratory of Saline-alkali Soil Improvement and Utilization (Saline-alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Wanli Xu
- Institute of Soil and Fertilizer and Agricultural Sparing Water, Xinjiang Academy of Agricultural Science, Urumqi, China
- Key Laboratory of Saline-alkali Soil Improvement and Utilization (Saline-alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi, China
- Key Laboratory of Saline-alkali Soil Improvement and Utilization (Saline-alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs, Urumqi, China
| |
Collapse
|
3
|
Tong X, Song Q, Wang L, Hong Z, Dong Y, Jiang J. Effects of biochars derived from four crop straws on a Cd-polluted cinnamon soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24764-24770. [PMID: 36692727 DOI: 10.1007/s11356-023-25440-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Crop straw biochar is an efficient and low-cost alternative amendment for heavy metal immobilization in acidic soil. However, reports on the effect of these biochars on the amendment of actual Cd-polluted calcareous soil are limited. Therefore, four biochars, derived from peanut, rice, maize, and wheat straws, were applied to determine the changes in the chemical properties of alkaline cinnamon soil and effects on Cd immobilization. The results showed that the cation exchange capacity and the contents of organic C, Mehlich-3 K, and Mehlich-3 P in the biochar-amended soil increased by 4.87-22.02%, 68.78-218.83%, 1.9-10.3 times, and 19.18-74.40%, respectively, indicating the potential high performance of biochar in improving soil fertility and productivity. The Community Bureau of Reference sequential extraction results showed that decrease in acid-extractable Cd resulted in a reduced availability of Cd. Thus, crop straw biochar could be a promising alternative for soil Cd decontamination and fertilization.
Collapse
Affiliation(s)
- Xuejiao Tong
- Yuhuan Environmental Technology Company Limited, Shijiazhuang, 050000, China
- Innovation Center for the Soil Pollution Remediation Technology of Hebei Province, Shijiazhuang, 050000, China
| | - Qingyun Song
- Yuhuan Environmental Technology Company Limited, Shijiazhuang, 050000, China
- Innovation Center for the Soil Pollution Remediation Technology of Hebei Province, Shijiazhuang, 050000, China
| | - Lei Wang
- Yuhuan Environmental Technology Company Limited, Shijiazhuang, 050000, China
- Innovation Center for the Soil Pollution Remediation Technology of Hebei Province, Shijiazhuang, 050000, China
| | - Zhineng Hong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ying Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jun Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|