1
|
Zhu Y, Wang X, Liang L, Yan K, Huang Y, Wang Y. Community assembly and succession of the functional membrane biofilm in the anammox dynamic membrane bioreactor: Deterministic assembly of anammox bacteria. ENVIRONMENTAL RESEARCH 2025; 269:120893. [PMID: 39832544 DOI: 10.1016/j.envres.2025.120893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
The anammox dynamic membrane bioreactor (DMBR) exhibits potential for efficient nitrogen removal via anammox processes. The functional membrane biofilm in the anammox DMBR significantly enhances nitrogen removal, ensuring robust operation. Nevertheless, ecological mechanisms underpinning the nitrogen removal function of the membrane biofilm remain unclear. We investigated the community succession and assembly of the membrane biofilm communities in two anammox DMBRs utilizing distinct inoculated anammox sludges. Anammox bacteria displayed niche differentiation in both DMBRs. Anammox bacteria Candidatus Kuenenia was selectively enriched to 8.5% abundance in the membrane biofilm communities, contributing to 5.2-7.2% of the nitrogen removal load. Membrane biofilm communities were primarily assembled through deterministic processes. Specifically, the selective enrichment of Candidatus Kuenenia on the membrane biofilms was primarily governed by homogenous selection process, explaining 9.67-9.82% of the variance. The deterministic assemblies of anammox bacteria were mainly influenced by the high substrate affinity of Candidatus Kuenenia and the limited availability of substrates (NH4+ and NO2-) in the membrane biofilms. Furthermore, the relatively weak permeate drag force during the DMBR filtration facilitated the preferential colonization of microbes from the anammox sludge to the membrane biofilm, resulting in the deterministic formation of the membrane biofilm communities with nitrogen removal function. Our findings offer insights into the ecological mechanisms driving the deterministic assembly of the functional membrane biofilm communities in the anammox DMBRs, informing the precise regulation of membrane biofilms for improved nitrogen removal in anammox applications of wastewater treatment.
Collapse
Affiliation(s)
- Yijing Zhu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Xin Wang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Liuchun Liang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Kun Yan
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Yihan Huang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China.
| |
Collapse
|
2
|
Zhu Y, Wang H, Li J, Wang Z, Wang Y. Metabolic Profiles and Microbial Synergy Mechanism of Anammox Biomass Enrichment and Membrane Fouling Alleviation in the Anammox Dynamic Membrane Bioreactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6284-6295. [PMID: 38488464 DOI: 10.1021/acs.est.3c10030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The anammox dynamic membrane bioreactor (DMBR) is promising in applications with enhanced anammox biomass enrichment and fouling alleviation. However, the metabolic mechanism underlying the functional features of anammox sludge and the biofilm membrane is still obscure. We investigated the metabolic networks of anammox sludge and membrane biofilm in the DMBR. The cooperation between anammox and dissimilatory nitrate reduction to ammonium processes favored the robust anammox process in the DMBR. The rapid bacterial growth occurred in the DMBR sludge with 1.33 times higher biomass yield compared to the MBR sludge, linked to the higher activities of lipid metabolism, nucleotide metabolism, and B vitamin-related metabolism of the DMBR sludge. The metabolism of the DMBR biofilm microbial community benefited the fouling alleviation that the abundant fermentative bacteria and their cooperation with the anammox sludge microbial community promoted organics degradation. The intensified degradation of foulants by the DMBR biofilm community was further evidenced by the active carbohydrate metabolism and the upregulated vitamin B intermediates in the biofilms of the DMBR. Our findings provide insights into key metabolic mechanisms for enhanced biomass enrichment and fouling control of the anammox DMBR, guiding manipulations and applications for overcoming anammox biomass loss in the treatment of wastewater under detrimental environmental conditions.
Collapse
Affiliation(s)
- Yijing Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|