1
|
Yuan Y, Tian Q, Hou L, Rao R, Yao C, Zhu H. The self-boosting ultrafast removal of Cr(VI) and organic dye in textile wastewater through sulfite-induced redox processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124182. [PMID: 38776997 DOI: 10.1016/j.envpol.2024.124182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The treatment of textile wastewater containing harmful metal ions poses a significant challenge in industrial applications due to its environmental impact. In this study, the use of sulfite for treating simulated dye wastewater containing New Coccine (NC) and Cr(VI) was investigated. The removal of NC was influenced by the redox reaction between Cr(VI) and sulfite, demonstrating a strong self-boosting effect of Cr(VI) on NC removal. Remarkable NC decoloration (95%) and Cr(VI) reduction (90%) were achieved within 1 min, highlighting the effectiveness of the treatment. Quenching experiments and electron paramagnetic resonance (EPR) technology confirmed that singlet oxygen (1O2) was the main oxidative agent for organic dye removal and SO4•-, •OH and Cr(V) were also identified as key contributors to NC degradation. The Cr(VI)/sulfite system exhibited higher efficiency in degrading azo dyes, such as NC and Congo Red (CR), compared to non-azo dyes like Methylene Blue (MB). This superiority may be attributed to the action of Cr(V) on azo groups. Additionally, the COD removal experiments were conducted on the actual dye wastewater, showing the excellent performance of the Cr(VI)/Sulfite system in treating industrial textile wastewater. This approach presents a promising strategy for effective "waste control by waste", offering great potential for addressing challenges related to dye wastewater treatment and environmental pollution control in practical industrial scenarios.
Collapse
Affiliation(s)
- Yijin Yuan
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, 230601, China.
| | - Qi Tian
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, 230601, China
| | - Longzhu Hou
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, 230601, China
| | - Richuan Rao
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, 230601, China
| | - Chengli Yao
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, 230601, China
| | - Haoyan Zhu
- Ultra High Voltage Branch of State Grid Anhui Electric Power Co.,Ltd., Anhui Hefei, 230000, China
| |
Collapse
|
2
|
Ding D, Zhao Y, Chen Y, Xu C, Fan X, Tu Y, Zhao D. Recent advances in bimetallic nanoscale zero-valent iron composite for water decontamination: Synthesis, modification and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120187. [PMID: 38310792 DOI: 10.1016/j.jenvman.2024.120187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024]
Abstract
The environmental pollution of water is one of the problems that have plagued human society. The bimetallic nanoscale zero-valent iron (BnZVI) technology has increased wide attention owing to its high performance for water treatment and soil remediation. In recent years, the BnZVI technology based on the development of nZVI has been further developed. The material chemistry, synthesis methods, and immobilization or surface stabilization of bimetals are discussed. Further, the data of BnZVI (Fe/Ni, Fe/Cu, Fe/Pd) articles that have been studied more frequently in the last decade are summarized in terms of the types of contaminants and the number of research literatures on the same contaminants. Five contaminants including trichloroethylene (TCE), Decabromodi-phenyl Ether (BDE209), chromium (Cr(VI)), nitrate and 2,4-dichlorophenol (2,4-DCP) were selected for in-depth discussion on their influencing factors and removal or degradation mechanisms. Herein, comprehensive views towards mechanisms of BnZVI applications including adsorption, hydrodehalogenation and reduction are provided. Particularly, some ambiguous concepts about formation of micro progenitor cell, production of hydrogen radicals (H·) and H2 and the electron transfer are highlighted. Besides, in-depth discussion of selectivity for N2 from nitrates and co-precipitation of chromium are emphasized. The difference of BnZVI is also discussed.
Collapse
Affiliation(s)
- Dahai Ding
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yuanyuan Zhao
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yan Chen
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Chaonan Xu
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Xudong Fan
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yingying Tu
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Donglin Zhao
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| |
Collapse
|
3
|
Li X, Liu H, Zhang Y, Mahlknecht J, Wang C. A review of metallurgical slags as catalysts in advanced oxidation processes for removal of refractory organic pollutants in wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120051. [PMID: 38262282 DOI: 10.1016/j.jenvman.2024.120051] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
With the rapid growth of the metallurgical industry, there is a significant increase in the production of metallurgical slags. The waste slags pose significant challenges for their disposal because of complex compositions, low utilization rates, and environmental toxicity. One promising approach is to utilize metallurgical slags as catalysts for treatment of refractory organic pollutants in wastewater through advanced oxidation processes (AOPs), achieving the objective of "treating waste with waste". This work provides a literature review of the source, production, and chemical composition of metallurgical slags, including steel slag, copper slag, electrolytic manganese residue, and red mud. It emphasizes the modification methods of metallurgical slags as catalysts and the application in AOPs for degradation of refractory organic pollutants. The reaction conditions, catalytic performance, and degradation mechanisms of organic pollutants using metallurgical slags are summarized. Studies have proved the feasibility of using metallurgical slags as catalysts for removing various pollutants by AOPs. The catalytic performance was significantly influenced by slags-derived catalysts, catalyst modification, and process factors. Future research should focus on addressing the safety and stability of catalysts, developing green and efficient modification methods, enhancing degradation efficiency, and implementing large-scale treatment of real wastewater. This work offers insights into the resource utilization of metallurgical slags and pollutant degradation in wastewater.
Collapse
Affiliation(s)
- Xingyang Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongwen Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yingshuang Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Zhang X, Wang Y, Li T, Wang H. Tannic acid modified microscale zero valent iron (TA-mZVI) with enhanced anti-passivation capability for Cr(VI) removal. CHEMOSPHERE 2024; 350:141034. [PMID: 38147926 DOI: 10.1016/j.chemosphere.2023.141034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/27/2023] [Accepted: 12/23/2023] [Indexed: 12/28/2023]
Abstract
The removal of Cr(VI) from aqueous solutions using microscale zerovalent iron (mZVI) shows promising potential. However, the surface passivation of mZVI particles hinders its widespread application. In this study, we prepared tannic acid (TA) modified mZVI composite (TA-mZVI) by a simple sonication method. The introduction of TA allowing TA-mZVI composite to adsorb Cr(VI) rapidly under electrostatic forces attraction, guarantying TA-mZVI exhibited remarkable Cr(VI) removal capacity with a maximum adsorption capacity of 106.1 mg⋅g-1. At an initial pH of 3, it achieved a rapid removal efficiency of 96.2% within just 5 min, which was 7.7 times higher than that of mZVI. Various characterizations, including XPS and CV analysis, indicated that the formation of TA-Fe complexes accelerates electron transfer. In addition, TA endows functional groups to TA-mZVI, raising the dispersion and stability and serves as a protective layer hindering passivation. Further mechanistic analysis revealed that Cr(VI) removal by TA-mZVI followed an adsorption-reduction-precipitation mechanism, with TA mitigating the surface passivation of mZVI and facilitating the reduction of most Cr(VI) to Cr(III). Batch cyclic experiments revealed that TA-mZVI exhibited satisfactory performance, maintaining over 85% Cr(VI) removal even after five cycles and minimally affected by various coexisting ions. With notable advantages in cost-effectiveness, ease-synthesis and recovery, this work provides a great promise for developing efficient reactive adsorbent for addressing Cr(VI) contamination in aqueous solutions.
Collapse
Affiliation(s)
- Xueyi Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yue Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tielong Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Haitao Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
5
|
Zhou YH, Yang SY, Wang MX, Guan YH, Ma J. Fast degradation of atrazine by nZVI-Cu 0/PMS: Re-evaluation and quantification of reactive species, generation pathways, and application feasibility. WATER RESEARCH 2023; 243:120311. [PMID: 37459795 DOI: 10.1016/j.watres.2023.120311] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/28/2023] [Accepted: 07/03/2023] [Indexed: 09/07/2023]
Abstract
Additive metal to zero-valent iron (ZVI) could enhance the reduction ability and the additive Cu0 was incorporated to ZVI to accelerate PMS activation with atrazine (ATZ) as target compound. The efficiencies of ATZ degradation and PMS decomposition climbed up firstly and then declined as Cu0 loading increased from 0.01 to 1.00 wt% with the maximums at 0.10 wt%. SO4•-, HO•, Fe(IV), O2•- and 1O2 were generated by nZVI-Cu0/PMS based on the results of electron paramagnetic resonance (EPR) and simultaneous degradation of nitrobenzene, ATZ, and methyl phenyl sulfoxide (PMSO). The rate constant of Fe(IV) and ATZ was estimated as 7 × 104 M-1∙s-1 via the variation of methyl phenyl sulfone (PMSO2)formation at different ATZ concentrations. However, Fe(IV) contributed negligibly to ATZ degradation due to the strong scavenging of Fe(IV) by PMS. SO4•- and HO• were the reactive species responsible for ATZ degradation and the yield ratio of SO4•- and HO• was about 8.70 at initial stage. Preliminary thermodynamic calculation on the possible activation ways revealed that the dominant production of SO4•- might originate from the atomic H reduction of PMS in the surface layer of nZVI-Cu0. Ten products of ATZ degradation were identified by HPLC/ESI/QTOF and the possible degradation pathways were analyzed combined with theoretical calculation on ATZ structure. The decrease of temperature or increase of solution pH led to the decline of ATZ degradation, as well as the individual addition of common ions (HCO3-, Cl-, SO42-, NH4+, NO3- and F-) and natural organic matters (NOM). In real water, ATZ was still efficiently degraded with the decontamination efficiency decreasing in the sequence of tap water > surface water > simulated wastewater > groundwater. For the treatment of ATZ-polluted continuous flow, nZVI-Cu0 in double-layer layout had a higher capacity than the single-layer mode. Meanwhile, the leaching TFe and TCu were limited. The results indicate nZVI-Cu0/PMS is applicable and the multiple-layer layout of nZVI-Cu0 is suggested for ATZ-polluted ground water and soil remediation.
Collapse
Affiliation(s)
- Yue-Han Zhou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Song-Yu Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Ming-Xuan Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Ying-Hong Guan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
6
|
Preparation of Fe-Cu bimetal from copper slag by carbothermic reduction–magnetic process for activating persulfate to degrade bisphenol A. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
7
|
Malakar A, Mandal S, Sen Gupta R, Islam SS, Manna K, Bose S. Polyoxometalate-immobilized carbon nanotube constructs triggered by host-guest assembly result in excellent electromagnetic interference shielding. NANOSCALE 2023; 15:3805-3822. [PMID: 36723254 DOI: 10.1039/d2nr05428k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the era of fifth-generation networks and the Internet of Things, new classes of lightweight, ultrathin, and multifunctional electromagnetic interference (EMI) shielding materials have become inevitable prerequisites for the protection of electronics from stray electromagnetic signals. In the present study, for the first time, we have designed a unique nanohybrid composed of a copper-based polyoxometalate (Cu-POM)-immobilized carbon nanotube construct, having a micron (∼100 μm)-level thickness, through a facile vacuum-assisted filtration technique. In this course of study, a total of four Cu-POMs, two from each category of Keggin and Anderson bearing opposite charges, i.e., positive and negative, have been rationally selected to investigate the effects of the host-guest electrostatic interaction between CNT and POMs in the EMI shielding performance. This approach of the host-guest electrostatic assembly between Cu-based polyanionic oxo clusters and counter-charged CNTs in the construct synergistically enhances the EMI shielding performance compared to the individual components dominated by 90% absorption in the X-band (8.2-12.4 GHz) frequency regime. Further, mutable EMI SE can be achieved by tuning the concentration of POMs and CNTs with different weight ratios. Such Cu-POM-immobilized CNT constructs demonstrating excellent shielding (∼45 dB) are not amenable via any other conventional routes, including flakes and dispersion.
Collapse
Affiliation(s)
- Amit Malakar
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
| | - Samir Mandal
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
| | - Ria Sen Gupta
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
| | - Sk Safikul Islam
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
| | - Kunal Manna
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
8
|
Morphological and structural analysis of Fe/Sn bimetal system and graphene oxide–chitosan modified Fe/Sn composite: a comparative study and their mechanistic role in degradative fixation of chlorazol black and reactive blue 4 from water. REACTION KINETICS MECHANISMS AND CATALYSIS 2023. [DOI: 10.1007/s11144-023-02366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
9
|
Chen Z, Cao W, Bai H, Zhang R, Liu Y, Li Y, Song J, Liu J, Ren G. Review on the degradation of chlorinated hydrocarbons by persulfate activated with zero-valent iron-based materials. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:761-782. [PMID: 36789716 DOI: 10.2166/wst.2023.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chlorinated hydrocarbons (CHCs) are often used in industrial processes, and they have been found in groundwater with increasing frequency in recent years. Several typical CHCs, including trichloroethylene (TCE), 1,1,1-trichloroethane (TCA), carbon tetrachloride (CT), etc., have strong cytotoxicity and carcinogenicity, posing a serious threat to human health and ecological environment. Advanced persulfate (PS) oxidation technology based on nano zero-valent iron (nZVI) has become a research hotspot for CHCs degradation in recent years. However, nZVI is easily oxidized to form the surface passivation layer and prone to aggregation in practical application, which significantly reduces the activation efficiency of PS. In order to solve this problem, various nZVI modification solutions have been proposed. This review systematically summarizes four commonly used modification methods of nZVI, and the theoretical mechanisms of PS activated by primitive and modified nZVI. Besides, the influencing factors in the engineering application process are discussed. In addition, the controversial views on which of the two (SO4·- and ·OH) is dominant in the nZVI/PS system are summarized. Generally, SO4·- predominates in acidic conditions while ·OH prefers neutral and alkaline environments. Finally, challenges and prospects for practical application of CHCs removal by nZVI-based materials activating PS are also analyzed.
Collapse
Affiliation(s)
- Zhiguo Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Wenqing Cao
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - He Bai
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Rong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Yiyun Liu
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Yan Li
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Jingpeng Song
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Juncheng Liu
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Gengbo Ren
- School of Energy and Environment Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
10
|
Liu Q, Luo Y, Shi J, Wu Z, Wang Q. Synergistic detoxification by combined reagents and safe filling utilization of cyanide tailings. CHEMOSPHERE 2023; 312:137157. [PMID: 36368542 DOI: 10.1016/j.chemosphere.2022.137157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Cyanide tailings are the major hazardous wastes generated in the production process of the gold industry, which not only contain highly toxic cyanide, but also contain heavy metals with recycling value and other substances suitable for building materials or filling. These tailings are in urgent need of purification treatment and safe utilization. In this study, the impacts of treatment methods, types and combinations of reagents on decyanation effect were researched. Gold in cyanide tailings was recovered by flotation, and flotation tailings were used for filling after identifying the properties of solid waste. Results are as follows: (1) INCO method and 5 reagents (sodium sulfite, sodium persulfate, copper sulfate, ferrous sulfate and zinc sulfate) were selected for synergistic decyanation treatment, and cyanide concents in slurry and leaching solution were decreased to the minimum. (2) The gold recovery rate of the tailings through flotation was increased by 27.8% than without detoxification. (3) Flotation tailings were identified as general industrial solid wastes by leaching toxicity and toxic substance content analysis. (4) As filling aggregate, under the conditions of slurry concentration of 63% and cement-sand ratio of 1:6, the strength filling body of flotation tailings reached 1.32 Mpa after 28 days of maintenance. (5) This process and combined reagents were applied to engineering. The cyanide content in the leaching solution and the flotation recovery rate of gold were kept below 0.2 mg/L and above 60% respectively, and the strength of the filling body was stable to meet the requirements of underground filling.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; State Key of Comprehensive Utilization of Low-grade Refractory Gold Ores, Shanghang, 364200, China; Xiamen Zijin Mining & Metallurgy Technology Co., Lid., Xiamen, 361101, China
| | - Yating Luo
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| | - Zengling Wu
- State Key of Comprehensive Utilization of Low-grade Refractory Gold Ores, Shanghang, 364200, China; Xiamen Zijin Mining & Metallurgy Technology Co., Lid., Xiamen, 361101, China
| | - Qiankun Wang
- State Key of Comprehensive Utilization of Low-grade Refractory Gold Ores, Shanghang, 364200, China; Xiamen Zijin Mining & Metallurgy Technology Co., Lid., Xiamen, 361101, China
| |
Collapse
|
11
|
Yang L, Ren X, Zhang Y, Chen Z. One-pot preparation of poly(triazine imide) with intercalation of Cu ions: A heterogeneous catalyst for peroxymonosulfate activation to degradate organic pollutants under sunlight. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Wang H, Zhong D, Xu Y, Chang H, Shen H, Xu C, Mou J, Zhong N. Enhanced removal of Cr(VI) from aqueous solution by nano- zero-valent iron supported by KOH activated sludge-based biochar. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Ni S, Fu Z, Li L, Ma M, Liu Y. Step-scheme heterojunction g-C3N4/TiO2 for efficient photocatalytic degradation of tetracycline hydrochloride under UV light. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Angaru GKR, Choi YL, Lingamdinne LP, Koduru JR, Yang JK, Chang YY, Karri RR. Portable SA/CMC entrapped bimetallic magnetic fly ash zeolite spheres for heavy metals contaminated industrial effluents treatment via batch and column studies. Sci Rep 2022; 12:3430. [PMID: 35236886 PMCID: PMC8891350 DOI: 10.1038/s41598-022-07274-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/16/2022] [Indexed: 12/28/2022] Open
Abstract
Heavy metals are perceived as a significant environmental concern because of their toxic effect, bioaccumulation, and persistence. In this work, a novel sodium alginate (SA) and carboxymethylcellulose (CMC) entrapped with fly ash derived zeolite stabilized nano zero-valent iron and nickel (ZFN) (SA/CMC-ZFN), followed by crosslinking with CaCl2, is synthesized and applied for remediation of Cu(II) and Cr(VI) from industrial effluent. The characterization of the adsorbent and its surface mechanism for removing metals were investigated using advanced instrumental techniques, including XRD, FT-IR, SEM-EDX, BET, and XPS. The outcomes from the batch experiments indicated that monolayer adsorption on homogeneous surfaces (Langmuir isotherm model) was the rate-limiting step in both heavy metals sorption processes. The maximum adsorption capacity of as-prepared SA/CMC-ZFN was 63.29 and 10.15 mg/g for Cu(II) and Cr(VI), respectively. Owing to the fact that the wastewater released from industries are large and continuous, a continuous column is installed for simultaneous removal of heavy metal ions from real industrial wastewater. The outcomes revealed the potential of SA/CMC-ZFN as an efficient adsorbent. The experimental breakthrough curves fitted well with the theoretical values of Thomas and Yoon-Nelson models. Overall, the results indicated that SA/CMC-ZFN is a viable, efficient, and cost-effective water treatment both interms of batch and column processes.
Collapse
Affiliation(s)
| | - Yu-Lim Choi
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | | | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Jae-Kyu Yang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE 1410, Brunei Darussalam.
| |
Collapse
|
15
|
Zhu L, Li M, Qi H, Sun Z. Using Fe-Cu/HGF composite cathodes for the degradation of Diuron by electro-activated peroxydisulfate. CHEMOSPHERE 2022; 291:132897. [PMID: 34780743 DOI: 10.1016/j.chemosphere.2021.132897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
An iron-copper graphite felt (Fe-Cu/HGF) electrode was successfully prepared by heat treatment and impregnation of graphite felt as the support followed by calcination, and an electro-activated peroxydisulfate (E-PDS) system with Fe-Cu/HGF as the cathode was constructed to degrade Diuron. This system synergistically activated PDS through electrochemical processes and transition metal catalysis. High-valence metal ions could be converted into low-valence metal ions by reduction at the cathode, and low-valence metal ions continuously activated PDS to generate more sulfate radicals (SO4-) and hydroxyl radicals (OH) to accelerate Diuron degradation. The Fe-Cu/HGF composite cathode exhibited a performance superior to graphite felt (RGF) obtained using pretreatment only, including increased hydrophilicity, significantly increased number of defect sites and larger electroactive surface area. Under optimized experimental degradation conditions, Diuron could be completely removed in 35 min, at which time copper ion leaching was not detected in the solution, while the total iron ion concentration was 0.27 mg L-1. Extending the reaction time to 6 h, the amount of total organic carbon was reduced to 32.2%. In addition, the free radicals that degraded Diuron were identified as mainly SO4- and OH with a slightly higher contribution of SO4-. The mechanism and pathways of Diuron degradation in the E-PDS system were determined. The E-PDS system was successfully applied to the degradation of other pollutants and the degradation of Diuron in different simulated water environments. In summary, the E-PDS system using Fe-Cu/HGF as the cathode is a promising treatment method for Diuron-containing wastewater.
Collapse
Affiliation(s)
- Lijing Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Mengya Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Haiqiang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
16
|
Yuan T, Wang X, Zhao X, Liu T, Zhang H, Lv Y, Wang L. Efficient degradation of minocycline by natural bornite-activated hydrogen peroxide and persulfate: kinetics and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:69314-69328. [PMID: 34296404 DOI: 10.1007/s11356-021-15500-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Natural bornite (NBo), a sulfide mineral of copper and iron, is one of the main mineral raw materials for copper extraction. In this study, NBo-activated hydrogen peroxide (H2O2) and persulfate processes (PS) for the degradation of minocycline (MNC) in aqueous solution were systemically investigated and compared. The MNC removal rates with the NBo/PS and NBo/H2O2 processes were 86.40% and 87.50%, respectively. The mineralization rate of NBo/PS (33.96%) was higher than that of NBo/H2O2 (29.94%) after reaction for 180 min. The effects of oxidant and activator dosage, pH, common inorganic anions (i.e., Cl-, NO3-, and HCO3-), and water composition on MNC degradation were systematically evaluated. In addition, the degradation of MNC in natural water matrix and toxicity evaluation was also studied to better evaluate the feasibility of practical application of those two processes. The results of free radical quenching experiments and electron paramagnetic resonance spectroscopy (EPR) showed that HO· was the main activated species in the NBo/H2O2 system, while SO4·- and HO· were the main activated species in the NBo/PS system. The degradation of MNC in the NBo/PS system was achieved through electron transfer, while the degradation of MNC in the NBo/H2O2 system was mainly achieved through free radical addition. The degradation pathway mainly included deamidation reactions, C-C bond breakage and hydroxylation. Reusability of NBo showed that NBo was considerably stable in activating PS and H2O2 for degradation of MNC, which was cost-effective activator. This work provides a new perspective on the degradation mechanism of pollutants by Fe-Cu bimetallic sulfide activation of PS and H2O2.
Collapse
Affiliation(s)
- Taikang Yuan
- Key Laboratory of Membrance Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Xudong Wang
- Key Laboratory of Membrance Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China.
| | - Xiaochen Zhao
- Key Laboratory of Membrance Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Tingting Liu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710000, PR China
| | - Hongmin Zhang
- Key Laboratory of Membrance Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Yongtao Lv
- Key Laboratory of Membrance Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Lei Wang
- Key Laboratory of Membrance Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| |
Collapse
|
17
|
In Situ Preparation of Copper-Loaded Carbon-Based Catalyst with Chelate Resin and Its Application on Persulfate Activation for X-3B Degradation. Catalysts 2020. [DOI: 10.3390/catal10111333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Under the guidance of the idea of “treating waste with waste”, copper-loaded carbon-based catalysts were prepared in situ using waste chelating resin with adsorbed copper. The effect of the catalyst activation temperature on dye brilliant red (X-3B) degradation was investigated and the characterization of the catalysts was analyzed. The results show that a catalyst activated at 800 °C (Cu-AC-800) has the largest specific surface area and abundant pore structure and the highest proportion of Cu under low valence states, which leads to the best performance in adsorbing and degrading X-3B. The influences of operation conditions and inorganic salt anions on persulfate (PS) activation were also investigated. Moreover, the degradation mechanism was preliminarily explored by quenching reactions. The main active free radicals in the system were determined as sulfate radicals (•SO4−). Given its use in solid waste recycling, copper-loaded carbon-based catalyst may provide some new insights for the remediation of wastewater.
Collapse
|