1
|
Liu C, Wan S, Cheng Y, Lv Z, Luo S, Liang Y, Xie Y, Leng X, Hu M, Zhang B, Yang X, Zheng G. Occurrence, sources, and human exposure assessment of amine-based rubber additives in dust from various micro-environments in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177023. [PMID: 39423893 DOI: 10.1016/j.scitotenv.2024.177023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Despite the ubiquitous use and potential health effects of amine-based rubber additives, information regarding their occurrences in indoor environments remains scarce and is basically investigated in traffic-related environments. In this study, a total of 140 dust samples collected from eight indoor micro-environments were analyzed for twelve amine-based rubber additives. Overall, 1,3-diphenylguanidine (DPG), dicyclohexylamine (DCHA), N-(1,3-dimethylbutyl)-N'-phenyl-p-penylenediamine (6PPD), 6PPD-quinone (6PPDQ), and hexa(methoxymethyl)melamine (HMMM) were frequently detected across all micro-environments with detection frequencies of 97 %, 51 %, 71 %, 99 %, and 77 %, respectively. The highest total concentration of amine-based rubber additives was found in parking lots (median 10,300 ng/g), indicating heavier emission sources of these compounds in vehicle-related indoor environments. Despite this, amine-based rubber additives were also frequently detected in various non-vehicle-related environments, such as markets, cinemas, and hotels, probably due to the widespread use of consumer products and more frequent air exchanges with outdoor environments. Further tracking of tire rubber products and paint particles from flooring materials in parking lots revealed that paint particles might be an overlooked contributor to amine-based rubber additives in indoor environments. Finally, the highest estimated daily intakes (EDIs) of all amine-based rubber additives via dust ingestion at home were observed for toddlers (3.48 ng/kg bw/d). This research provides a comprehensive overview of human exposure to a variety of amine-based rubber additives in various indoor environments. ENVIRONMENTAL IMPLICATION: This study highlights the presence of high concentrations of amine-based additives in indoor dust from both traffic-related and non-traffic-related indoor environments. Additional efforts are needed to identify potential sources of amine-based rubber additives indoors, beyond just tire rubber. This is critical because the widespread presence of rubber products in indoor settings could pose a risk to human health.
Collapse
Affiliation(s)
- Chenglin Liu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sheng Wan
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yao Cheng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong Lv
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shusheng Luo
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuge Liang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yichun Xie
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinrui Leng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Hu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bintian Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guomao Zheng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Hiller E, Faragó T, Kolesár M, Filová L, Mihaljevič M, Jurkovič Ľ, Demko R, Machlica A, Štefánek J, Vítková M. Metal(loid)s in urban soil from historical municipal solid waste landfill: Geochemistry, source apportionment, bioaccessibility testing and human health risks. CHEMOSPHERE 2024; 362:142677. [PMID: 38908448 DOI: 10.1016/j.chemosphere.2024.142677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Landfills, especially those poorly managed, can negatively affect the environment and human beings through chemical contamination of soils and waters. This study investigates the soils of a historical municipal solid waste (MSW) landfill situated in the heart of a residential zone in the capital of Slovakia, Bratislava, with an emphasis on metal (loid) contamination and its consequences. Regardless of the depth, many of the soils exhibited high metal (loid) concentrations, mainly Cd, Cu, Pb, Sb, Sn and Zn (up to 24, 2620, 2420, 134, 811 and 6220 mg/kg, respectively), classifying them as extremely contaminated based on the geo-accumulation index (Igeo >5). The stable lead isotopic ratios of the landfill topsoil varied widely (1.1679-1.2074 for 206Pb/207Pb and 2.0573-2.1111 for 208Pb/206Pb) and indicated that Pb contained a natural component and an anthropogenic component, likely municipal solid waste incineration (MSWI) ash and construction waste. Oral bioaccessibility of metal (loid)s in the topsoil was variable with Cd (73.2-106%) and Fe (0.98-2.10%) being the most and least bioaccessible, respectively. The variation of metal (loid) bioaccessibility among the soils could be explained by differences in their geochemical fractionation as shown by positive correlations of bioaccessibility values with the first two fractions of BCR (Community Bureau of Reference) sequential extraction for As, Cd, Mn, Ni, Pb, Sn and Zn. The results of geochemical fractionation coupled with the mineralogical characterisation of topsoil showed that the reservoir of bioaccessible metal (loid)s was calcite and Fe (hydr)oxides. Based on aqua regia metal (loid) concentrations, a non-carcinogenic risk was demonstrated for children (HI = 1.59) but no risk taking into account their bioaccessible concentrations (HI = 0.65). This study emphasises the need for detailed research of the geochemistry of wastes deposited in urban soils to assess the potentially hazardous sources and determine the actual bioaccessibility and human health risks of the accumulated metal (loid)s.
Collapse
Affiliation(s)
- Edgar Hiller
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic.
| | - Tomáš Faragó
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic.
| | - Martin Kolesár
- DEKONTA Slovensko, Ltd., Odeská 49, 821 06 Bratislava, Slovak Republic.
| | - Lenka Filová
- Department of Applied Mathematics and Statistics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina 1, 842 48 Bratislava, Slovak Republic.
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic.
| | - Ľubomír Jurkovič
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic.
| | - Rastislav Demko
- Department of Older Geological Formations, Division of Geology, State Geological Institute of Dionýz Štúr, Mlynská dolina 1, 817 04 Bratislava 11, Slovak Republic.
| | - Andrej Machlica
- DEKONTA Slovensko, Ltd., Odeská 49, 821 06 Bratislava, Slovak Republic.
| | - Ján Štefánek
- DEKONTA Slovensko, Ltd., Odeská 49, 821 06 Bratislava, Slovak Republic.
| | - Martina Vítková
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha - Suchdol, Czech Republic.
| |
Collapse
|
3
|
Trimmel S, Wagner S, Feiner L, Feiner M, Haluza D, Hood-Nowotny R, Pitha U, Prohaska T, Puschenreiter M, Spörl P, Watzinger A, Ziss E, Irrgeher J. Compost amendment in urban gardens: elemental and isotopic analysis of soils and vegetable tissues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47022-47038. [PMID: 38985423 PMCID: PMC11512910 DOI: 10.1007/s11356-024-34240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Urban horticulture poses a sustainable form of food production, fosters community engagement and mitigates the impacts of climate change on cities. Yet, it can also be tied to health challenges related to soil contamination. This work builds on a previous study conducted on eleven urban gardens in the city of Vienna, Austria. Following the findings of elevated Pb levels in some soil and plant samples within that project, the present study investigates the elemental composition of soil and plants from two affected gardens 1 year after compost amendment. Inductively coupled plasma mass spectrometry (ICP-MS) analysis of skin, pulp and seeds of tomato fruits revealed minor variations in elemental composition which are unlikely to have an impact on food safety. In turn, a tendency of contaminant accumulation in root tips and leaves of radishes was found. Washing of lettuce led to a significant reduction in the contents of potentially toxic elements such as Be, Al, V, Ni, Ga and Tl, underscoring the significance of washing garden products before consumption. Furthermore, compost amendments led to promising results, with reduced Zn, Cd and Pb levels in radish bulbs. Pb isotope ratios in soil and spinach leaf samples taken in the previous study were assessed by multi-collector (MC-) ICP-MS to trace Pb uptake from soils into food. A direct linkage between the Pb isotopic signatures in soil and those in spinach leaves was observed, underscoring their effectiveness as tracers of Pb sources in the environment.
Collapse
Affiliation(s)
- Simone Trimmel
- Department General, Analytical and Physical Chemistry, Montanuniversität Leoben, Leoben, Austria
| | - Stefan Wagner
- Department General, Analytical and Physical Chemistry, Montanuniversität Leoben, Leoben, Austria
| | - Laura Feiner
- Department General, Analytical and Physical Chemistry, Montanuniversität Leoben, Leoben, Austria
| | - Maria Feiner
- Department General, Analytical and Physical Chemistry, Montanuniversität Leoben, Leoben, Austria
| | - Daniela Haluza
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Rebecca Hood-Nowotny
- Department of Forest- and Soil Sciences, Institute of Soil Research (IBF), BOKU University, Vienna, Austria
| | - Ulrike Pitha
- Department of Civil Engineering and Natural Hazards, Institute of Soil Bioengineering and Landscape Construction (IBLB), BOKU University, Vienna, Austria
| | - Thomas Prohaska
- Department General, Analytical and Physical Chemistry, Montanuniversität Leoben, Leoben, Austria
| | - Markus Puschenreiter
- Department of Forest- and Soil Sciences, Institute of Soil Research (IBF), BOKU University, Vienna, Austria
| | - Philipp Spörl
- Department of Civil Engineering and Natural Hazards, Institute of Soil Bioengineering and Landscape Construction (IBLB), BOKU University, Vienna, Austria
| | - Andrea Watzinger
- Department of Forest- and Soil Sciences, Institute of Soil Research (IBF), BOKU University, Vienna, Austria
| | - Elisabeth Ziss
- Department of Forest- and Soil Sciences, Institute of Soil Research (IBF), BOKU University, Vienna, Austria
| | - Johanna Irrgeher
- Department General, Analytical and Physical Chemistry, Montanuniversität Leoben, Leoben, Austria.
| |
Collapse
|
4
|
Can Urban Grassland Plants Contribute to the Phytoremediation of Soils Contaminated with Heavy Metals. Molecules 2022; 27:molecules27196558. [PMID: 36235095 PMCID: PMC9572121 DOI: 10.3390/molecules27196558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
The main objective of this study was to investigate whether the most common wild plant species of urban grassland can be used for phytoremediation of soils polluted with heavy metals. The study was conducted in the city of Varaždin, in northern Croatia. The content of heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn) was determined in soil samples as well as in unwashed and washed plant samples (Taraxacum officinale, Plantago lanceolata, Trifolium repens). The results show that the most polluted site is the railway station, while most sites are polluted by road traffic. The soils are most enriched with Pb, Cu, Zn and Cd. The bioconcentration factors for all three plant species are <1, indicating the relatively low capacity of phytoextraction. A considerable amount of heavy metals is found in the dust deposited on the plant surface, which is confirmed by a statistically significant difference between washed and unwashed plant samples. In addition, the biomass of each plant species that can be removed (in t/ha year), the mass of specific heavy metal that can be removed (in kg/ha), and the years required for phytoremediation are reported. In conclusion, phytoremediation with only common plant species of urban grassland is not possible within a reasonable period of time.
Collapse
|
5
|
Pilková Z, Hiller E, Filová L, Jurkovič Ľ. Sixteen priority polycyclic aromatic hydrocarbons in roadside soils at traffic light intersections (Bratislava, Slovakia): concentrations, sources and influencing factors. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3473-3492. [PMID: 34613560 DOI: 10.1007/s10653-021-01122-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Combustion of fossil fuels is the most important source of polycyclic aromatic hydrocarbons (PAHs) in the environment. Cities are typical of many human activities which are dependent on fossil fuels (road and railway transport, heat generation, waste incineration and industry) on a small area, leading to high concentrations of PAHs in urban air, dust and soil. The aim of this study was to determine the possible influence of urban traffic on the accumulation of sixteen priority PAHs in soils (n = 132 at two soil depths of 0-10 cm and 10-20 cm) taken at intersections (n = 37) with different traffic volumes and road ages. Variable concentrations of the sum of PAHs (∑16PAH) ranging from 188 to 21,950 μg/kg with a mean and median of 3021 μg/kg and 1930 μg/kg were recorded, respectively. Concentrations of PAHs positively correlated with soil organic carbon content (TOC) (rSpearman = 0.518; p < 0.001). Statistically significant positive correlations between ∑16PAH concentrations and traffic volume/road age were found in this study (rSpearman = 0.689/0.619; p < 0.001), while ∑16PAH concentration decreased with increasing distance from the road edge and was statistically lower at a soil depth of 10-20 cm than at 0-10 cm (p < 0.05). Multivariate statistical methods (principal component analysis and cluster analysis) applied to log-ratio transformed data (clr) to decrease the constant sum constraint coupled with positive matrix factorisation (PMF) modelling pointed to the dominance of pyrogenic emission sources, with 62.1% traffic-related (petrol and diesel emissions, liquid fuel and motor oil spills, and tyre wear) according to PMF results.
Collapse
Affiliation(s)
- Zuzana Pilková
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Edgar Hiller
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic.
| | - Lenka Filová
- Department of Applied Mathematics and Statistics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina 1, 842 48, Bratislava, Slovak Republic
| | - Ľubomír Jurkovič
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| |
Collapse
|
6
|
Hiller E, Pilková Z, Filová L, Mihaljevič M, Špirová V, Jurkovič Ľ. Metal(loid) concentrations, bioaccessibility and stable lead isotopes in soils and vegetables from urban community gardens. CHEMOSPHERE 2022; 305:135499. [PMID: 35777541 DOI: 10.1016/j.chemosphere.2022.135499] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Community gardens are "green oases" of recent cities with many benefits for human society. From a human health perspective, these benefits can be damaged by chemical contamination of soil and cultivated vegetables. Using geochemical approaches, this study characterised (i) total metal(loid) concentrations in soils and two commonly grown vegetables in urban community gardens (Bratislava, Slovakia), (ii) gastrointestinal bioaccessibility using a modified physiologically based extraction test (PBET), and (iii) stable lead (Pb) isotopes in order to identify sources of metal(loid)s, solubilisation in the human body and migration of Pb from soil to vegetables. While some soils could be considered contaminated when compared to the Slovak legislation for agricultural soil, the bioaccessibility of metal(loid)s did not exceed 20% in the intestinal phase, with the exception of cadmium (Cd). Tomatoes and lettuce contained low total and bioaccessible concentrations of metal(loid)s, being safe for people who consume their own grown vegetables. There were differences in Pb isotope composition among bulk soils, vegetables and bioaccessible Pb, with less radiogenic Pb being preferentially mobilised. Statistical methods considering the compositional nature of the geochemical data and the enrichment factor (EF) distinguished well metal(loid)s of natural origin (As, Co, Cr, Fe, Mn, Ni, V) from those with anthropogenic contributions. This research has shown the usefulness of integrating different methodologies to better understand the geochemistry of metal(loid)s in urban soils with their highly diversified sources.
Collapse
Affiliation(s)
- Edgar Hiller
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic.
| | - Zuzana Pilková
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Lenka Filová
- Department of Applied Mathematics and Statistics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina 1, 842 48, Bratislava, Slovak Republic
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43, Prague 2, Czech Republic
| | - Veronika Špirová
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Ľubomír Jurkovič
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| |
Collapse
|
7
|
Guo G, Li K, Lei M. Accumulation, environmental risk characteristics and associated driving mechanisms of potential toxicity elements in roadside soils across China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155342. [PMID: 35489507 DOI: 10.1016/j.scitotenv.2022.155342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/22/2022] [Accepted: 04/13/2022] [Indexed: 05/25/2023]
Abstract
Roadside soils may be affected by potential toxicity elements (TPEs) from vehicles; however, pollution status, ecological and health risks of PTEs in roadside soils were rarely reported on national scale. In this study, a dataset of PTEs in roadside soils was compiled based on the literatures published in 2000-2021, and then pollution level, ecological and health risks of PTEs were evaluated using geochemical accumulation index (Igeo), potential ecological risk index (ER), and human risk assessment coupled with Monte Carlo simulation. Driving factors of PTE accumulation in soils were determined by Geo-detector method. Results indicated that Cd exhibited moderate pollution and considerable ecological risk with the highest Igeo of 1.25 and ER of 100.1, respectively. Vehicle ownership (VP) and precipitation (PP) significantly affected accumulation of PTEs, with q values of 0.209 and 0.191 (P < 0.05), respectively. VP paired with PP enhanced nonlinearly PTE accumulation (q = 0.77). Only 6.89% and 1.54% of non-carcinogenic risks for children and adolescent exceeded the threshold of 1, respectively, whereas 93.11%, 95.67%, 58.80% and 58.14% of carcinogenic risks for senior, adults, adolescent, and children surpassed 1E-06, respectively. The results of this study provided valuable implication for managers to design effective strategies for pollution prevent and risk control.
Collapse
Affiliation(s)
- Guanghui Guo
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kai Li
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Tin and Antimony as Soil Pollutants along Railway Lines—A Case Study from North-Western Croatia. ENVIRONMENTS 2022. [DOI: 10.3390/environments9010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of this study was to determine the extent and patterns of antimony and tin contamination in soils along railway lines, as there are very few data in the literature on this subject. The study was conducted in north-western Croatia. Total and bioavailable concentrations of Sn and Sb were detected using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). The following results were obtained: total concentrations of Sb ranged from 0.98 to 52.0 mg/kg and of Sn from 3.04 mg/kg to 97.6 mg/kg. The soil samples showed pronounced Sb and Sn enrichment, up to 87 and 33 times the median value for European soils, respectively. In contrast to the total concentrations, the bioavailable concentrations showed relatively low values. For Sn, the percentage of total content ranged from 0.001 to 0.021%, while for Sb it ranged from 0.001 to 0.136%. Statistical data analysis suggests that the distribution of Sb and Sn in soils near railway lines is influenced by the functional use of the site, distance from the tracks, topography, age of the railway line, and also by soil properties such as soil texture, humus content, and soil pH. This study demonstrates that rail transport is a source of soil pollution with Sn and Sb. The origin of Sb and Sn enrichment is abrasion by brakes, rails, wheels, freight losses, exhaust gasses, etc. Both elements in soils along railway lines pose an environmental risk to humans, agricultural production, and wildlife, and therefore further detailed studies are required.
Collapse
|
9
|
O'Shea MJ, Krekeler MPS, Vann DR, Gieré R. Investigation of Pb-contaminated soil and road dust in a polluted area of Philadelphia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:440. [PMID: 34164717 PMCID: PMC8415436 DOI: 10.1007/s10661-021-09213-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/12/2021] [Indexed: 05/27/2023]
Abstract
A multi-analytical geochemical investigation of Pb-contaminated collocated road dust and soils, at two size fractions, was performed in Fishtown, Philadelphia, PA, USA. The combinations of methods employed in this case study were chosen to better characterize the contamination, enhance identification of pollution sources, improve understanding of the impact of former Pb smelters, and to study the relationships between two media and between two size fractions. High concentrations of Cu and Sn were observed in both bulk and finer road dust, whereas large concentrations of Zn and Pb were found in both bulk and finer soil samples, implying pollution. There were no obvious associations between Pb soil concentrations and former smelter locations. Therefore, the primary source of the high mean Pb content in bulk (595 ppm) and fine soils (687 ppm) was likely legacy lead paint and/or leaded-gasoline products. Using electron microscopy, we found that Pb particles were mainly 0.1-10 µm in diameter and were ubiquitous in both soil and dust samples. Two-way analysis of variance tests revealed that, for most chemical elements explored here, there were statistically significant differences in concentrations based on media and size fractions, with finer sizes being more polluted than the bulk. The mineralogical composition and the sources of several pollutant elements (Cr, Cu, Zn, Pb), however, were similar for both soil and dust, pointing to material exchange between the two media. We suggest that future investigations of collocated road dust and soils in urban environments use the methodologies applied in this study to obtain detailed insights into sources of roadside pollution and the relationships between neighboring media.
Collapse
Affiliation(s)
- Michael J O'Shea
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA, 19104-6316, USA.
| | - Mark P S Krekeler
- Department of Geology and Environmental Earth Science, Miami University Hamilton, Hamilton, OH, 45011, USA
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, 45056, USA
| | - David R Vann
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA, 19104-6316, USA
| | - Reto Gieré
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA, 19104-6316, USA
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104-6316, USA
| |
Collapse
|