1
|
Wang Y, Xue C, Xue B, Zhang B, Xu C, Ren J, Lin F. Long- and short-run asymmetric impacts of climate variation on tuberculosis based on a time series study. Sci Rep 2024; 14:23565. [PMID: 39384889 PMCID: PMC11464594 DOI: 10.1038/s41598-024-73370-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024] Open
Abstract
Distinguishing between long-term and short-term effects allows for the identification of different response mechanisms. This study investigated the long- and short-run asymmetric impacts of climate variation on tuberculosis (TB) and constructed forecasting models using the autoregressive distributed lag (ARDL) and nonlinear ARDL (NARDL). TB showed a downward trend, peaking in March-May per year. A 1 h increment or decrement in aggregate sunshine hours resulted in an increase of 32 TB cases. A 1 m/s increment and decrement in average wind velocity contributed to a decrement of 3600 and 5021 TB cases, respectively (Wald long-run asymmetry test [WLR] = 13.275, P < 0.001). A 1% increment and decrement in average relative humidity contributed to an increase of 115 and 153 TB cases, respectively. A 1 hPa increment and decrement in average air pressure contributed to a decrease of 318 and 91 TB cases, respectively (WLR = 7.966, P = 0.005). ∆temperature(-), ∆(sunshine hours)( -), ∆(wind velocity)(+) and ∆(wind velocity)(-) at different lags had a meaningful short-run effect on TB. The NARDL outperformed the ARDL in forecasting. Climate variation has significant long- and short-run asymmetric impacts on TB. By incorporating both dimensions of effects into the NARDL, the accuracy of the forecasts and policy recommendations for TB can be enhanced.
Collapse
Affiliation(s)
- Yongbin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, The First Affiliated Hospital of Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang, 453003, Henan Province, People's Republic of China.
| | - Chenlu Xue
- Department of Epidemiology and Health Statistics, School of Public Health, The First Affiliated Hospital of Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang, 453003, Henan Province, People's Republic of China
| | - Bo Xue
- Department of Epidemiology and Health Statistics, School of Public Health, The First Affiliated Hospital of Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang, 453003, Henan Province, People's Republic of China
| | - Bingjie Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, The First Affiliated Hospital of Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang, 453003, Henan Province, People's Republic of China
| | - Chunjie Xu
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jingchao Ren
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, No. 61, University Chengzhong Road, Huxi Street, Shapingba District, Chongqing, 401331, People's Republic of China.
| | - Fei Lin
- Department of Epidemiology and Health Statistics, School of Public Health, The First Affiliated Hospital of Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang, 453003, Henan Province, People's Republic of China.
| |
Collapse
|
2
|
Wang Y, Zhang B, Xue C, Zhou P, Dong X, Xu C. Long- and Short-Run Asymmetric Effects of Meteorological Parameters on Hemorrhagic Fever with Renal Syndrome in Heilongjiang: A Population-Based Retrospective Study. Transbound Emerg Dis 2024; 2024:6080321. [PMID: 40303122 PMCID: PMC12016769 DOI: 10.1155/2024/6080321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 05/02/2025]
Abstract
Examining both long-term and short-term effects can enhance the precision and reliability of time series analysis. This study aimed to delve into the asymmetric effects of weather conditions on hemorrhagic fever with renal syndrome (HFRS) in the long and short terms and build a forecasting system. Data comprising monthly HFRS incidents and weather factors in Heilongjiang from January 2004 to December 2019 were extracted. Subsequently, the long- and short-term asymmetric impacts were examined using the autoregressive distributed lag (ARDL) and nonlinear ARDL (NARDL) models. Next, the samples were partitioned into training and testing subsets to evaluate the predictive potential of both models. From 2004 to 2019, HFRS exhibited a declining trend (average annual percentage change = -6.744%, 95% CI: -13.52%-0.563%) and a dual seasonal pattern, with a prominent peak in June and a secondary one in October-December. This study identified long-term asymmetric effects of rainfall (Wald long-run asymmetry (WLR) = 3.292, p=0.001), wind velocity (WLR = -3.271, p=0.001), and air pressure (WLR = -6.453, p < 0.001) on HFRS. Additionally, this study observed short-term asymmetric impacts of relative humidity (Wald short-run symmetry (WSR) = -1.547, p=0.001), rainfall (WSR = -1.984, p=0.049), and air pressure (WSR = -2.33, p=0.021) on HFRS. A unit increase in relative humidity, sunshine hours, and air pressure resulted in about 10.9%, 1.9%, and 13.6% decreases in HFRS, respectively; a unit decrease in relative humidity, rainfall, and sunshine hours led to about 6.7%, 1.8%, and 2% decreases in HFRS, respectively. When temperature increased and decreased by one unit, the HFRS incidence increased by 11.6% and 22.5%, respectively. HFRS also varied significantly with the positive and negative changes in differenced (D) temperature, D (relative humidity), D (wind velocity), D (rainfall), D (air pressure), and D (sunshine hours) at 0-3-month delays over the short term. The NARDL model exhibited notably lower error rates in forecasting compared to the ARDL model. Meteorological parameters affect HFRS in both the long and short term, often showing asymmetric effects. The NARDL model, capable of incorporating various weather parameters, proves to be valuable in predicting HFRS epidemic and guiding strategies for prevention and control.
Collapse
Affiliation(s)
- Yongbin Wang
- Department of Epidemiology and Health StatisticsSchool of Public HealthThe First Affiliated HospitalXinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang 453003, Henan, China
| | - Bingjie Zhang
- Department of Epidemiology and Health StatisticsSchool of Public HealthThe First Affiliated HospitalXinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang 453003, Henan, China
| | - Chenlu Xue
- Department of Epidemiology and Health StatisticsSchool of Public HealthThe First Affiliated HospitalXinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang 453003, Henan, China
| | - Peiping Zhou
- Department of Epidemiology and Health StatisticsSchool of Public HealthThe First Affiliated HospitalXinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang 453003, Henan, China
| | - Xinwen Dong
- Department of Epidemiology and Health StatisticsSchool of Public HealthThe First Affiliated HospitalXinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang 453003, Henan, China
| | - Chunjie Xu
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of PharmacologyInstitute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Wang Y, Liang Z, Qing S, Xi Y, Xu C, Lin F. Asymmetric impact of climatic parameters on hemorrhagic fever with renal syndrome in Shandong using a nonlinear autoregressive distributed lag model. Sci Rep 2024; 14:9739. [PMID: 38679612 PMCID: PMC11056385 DOI: 10.1038/s41598-024-58023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) poses a major threat in Shandong. This study aimed to investigate the long- and short-term asymmetric effects of meteorological factors on HFRS and establish an early forecasting system using autoregressive distributed lag (ARDL) and nonlinear ARDL (NARDL) models. Between 2004 and 2019, HFRS exhibited a declining trend (average annual percentage change = - 9.568%, 95% CI - 16.165 to - 2.451%) with a bimodal seasonality. A long-term asymmetric influence of aggregate precipitation (AP) (Wald long-run asymmetry [WLR] = - 2.697, P = 0.008) and aggregate sunshine hours (ASH) (WLR = 2.561, P = 0.011) on HFRS was observed. Additionally, a short-term asymmetric impact of AP (Wald short-run symmetry [WSR] = - 2.419, P = 0.017), ASH (WSR = 2.075, P = 0.04), mean wind velocity (MWV) (WSR = - 4.594, P < 0.001), and mean relative humidity (MRH) (WSR = - 2.515, P = 0.013) on HFRS was identified. Also, HFRS demonstrated notable variations in response to positive and negative changes in ∆MRH(-), ∆AP(+), ∆MWV(+), and ∆ASH(-) at 0-2 month delays over the short term. In terms of forecasting, the NARDL model demonstrated lower error rates compared to ARDL. Meteorological parameters have substantial long- and short-term asymmetric and/or symmetric impacts on HFRS. Merging NARDL model with meteorological factors can enhance early warning systems and support proactive measures to mitigate the disease's impact.
Collapse
Affiliation(s)
- Yongbin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, The First Affiliated Hospital of Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang, Henan Province, 453003, People's Republic of China.
| | - Ziyue Liang
- Department of Epidemiology and Health Statistics, School of Public Health, The First Affiliated Hospital of Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Siyu Qing
- Department of Epidemiology and Health Statistics, School of Public Health, The First Affiliated Hospital of Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Yue Xi
- Department of Epidemiology and Health Statistics, School of Public Health, The First Affiliated Hospital of Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Chunjie Xu
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Fei Lin
- Department of Epidemiology and Health Statistics, School of Public Health, The First Affiliated Hospital of Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang, Henan Province, 453003, People's Republic of China.
| |
Collapse
|
4
|
Wang Y, Xue C, Zhang B, Li Y, Xu C. Asymmetric Effects of Weather-Integrated Human Brucellosis Forecasting System Using a New Nonlinear Autoregressive Distributed Lag Model. Transbound Emerg Dis 2024; 2024:8381548. [PMID: 40303170 PMCID: PMC12017184 DOI: 10.1155/2024/8381548] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 05/02/2025]
Abstract
Human brucellosis (HB) remains a significant public health concern in China. This study aimed to investigate the long- and short-term asymmetric impacts of meteorological variables on HB and develop an early prediction system. Monthly data on HB incidence and meteorological variables were collected from 2005 to 2020. The study employed the autoregressive distributed lag (ARDL) and nonlinear ARDL (NARDL) to analyze the long- and short-term effects of climate variables on HB. Subsequently, the data were split into training (from January 2005 to December 2019) and testing parts (from January to December 2020) to develop and validate the forecasting accuracy of both models. During 2005-2020, there were 34,993 HB cases (2.03 per 100,000 persons) and there was an overall rising trend (average annual percentage change = 21.18%, 95%CI 18.36%-26.01%) in HB incidence, peaked in May and troughed in December per year. A 1 m/s increment and decrement in differenced (Δ) average wind velocity (AWV) contributed to 73.8% and 87.5% increases in ΔHB incidence, respectively (Wald long-run asymmetry test (WLR) = 1.17, P=0.25). A 1 hr increment and decrement in Δ(average relative humidity) contributed to both 3.1% increases in ΔHB incidence (Wald short-run asymmetry test = 3.01, P=0.003). Average temperature (AT) (P < 0.001) and average air pressure (P=0.012) played a long-run linear impact on HB. Δ(aggregate precipitation) (WLR = 1.76, P=0.08) and Δ(aggregate sunshine hours) (WLR = 0.07, P=0.94) did not have a significant long-term asymmetric impact on Δlog(HB). ΔΔAT(+) and ΔΔAWV(-) at a 1-month lag had a meaningful short-run effect on Δlog(HB). In the forecasting aspect, the NARDL produced significantly smaller error rates compared to the ARDL. Weather variability played significant long- and short-run asymmetric roles in HB incidence. The NARDL by integrating climatic variables could accurately capture the dynamic structure of HB epidemic, meaning that meteorological variables should be integrated into the public health intervention plan for HB.
Collapse
Affiliation(s)
- Yongbin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang 453003, Henan Province, China
| | - Chenlu Xue
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang 453003, Henan Province, China
| | - Bingjie Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang 453003, Henan Province, China
| | - Yuchun Li
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang 453003, Henan Province, China
| | - Chunjie Xu
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
5
|
Liang W, Hu A, Hu P, Zhu J, Wang Y. Estimating the tuberculosis incidence using a SARIMAX-NNARX hybrid model by integrating meteorological factors in Qinghai Province, China. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:55-65. [PMID: 36271168 DOI: 10.1007/s00484-022-02385-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Tuberculosis (TB) is recognized as being a major public health concern owing to its increase in Qinghai, China. In this study, we aimed to estimate the long-term effects of meteorological variables on TB incidence and construct an advanced hybrid model with seasonal autoregressive integrated moving average (SARIMA) and a neural network nonlinear autoregression (SARIMAX-NNARX) by integrating meteorological factors and evaluating the model fitting and prediction effect. During 2005-2017, TB experienced an upward trend with obvious periodic and seasonal characteristics, peaking in spring and winter. The results showed that TB incidence was positively correlated with average relative humidity (ARH) with a 2-month lag (β = 1.889, p = 0.003), but negatively correlated with average atmospheric pressure (AAP) with a 1-month lag (β = - 1.633, p = 0.012), average temperature (AT) with a 2-month lag (β = - 0.093, p = 0.027), and average wind speed (AWS) with a 0-month lag (β = - 13.221, p = 0.033), respectively. The SARIMA (3,1,0)(1,1,1)12, SARIMAX(3,1,0)(1,1,1)12, and SARIMAX(3,1,0)(1,1,1)12-NNARX(15,3) were considered preferred models based on the evaluation criteria. Of them, the SARIMAX-NNARX technique had smaller error values than the SARIMA and SARIMAX models in both fitting and forecasting aspects. The sensitivity analysis also revealed the robustness of the mixture forecasting model. Therefore, the SARIMAX-NNARX model by integrating meteorological variables can be used as an accurate method for forecasting the epidemic trends which would be great importance for TB prevention and control in the coming periods in Qinghai.
Collapse
Affiliation(s)
- Wenjuan Liang
- Department of Epidemiology, International School of Public Health and One Health, Hainan Medical University, Haikou, Hainan Province, 571199, People's Republic of China
- Department of Epidemiology and Health Statistics, School of Public Health, The Third Affiliated Hospital, Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Ailing Hu
- Department of Epidemiology and Health Statistics, School of Public Health, The Third Affiliated Hospital, Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Pan Hu
- Department of Epidemiology and Health Statistics, School of Public Health, The Third Affiliated Hospital, Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Jinqin Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, The Third Affiliated Hospital, Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Yongbin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, The Third Affiliated Hospital, Xinxiang Medical University, No. 601 Jinsui Road, Hongqi District, Xinxiang, Henan Province, 453003, People's Republic of China.
| |
Collapse
|
6
|
Statistical Analysis Dow Jones Stock Index—Cumulative Return Gap and Finite Difference Method. JOURNAL OF RISK AND FINANCIAL MANAGEMENT 2022. [DOI: 10.3390/jrfm15020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This study was motivated by the poor performance of the current models used in stock return forecasting and aimed to improve the accuracy of the existing models in forecasting future stock returns. The current literature largely assumes that the residual term used in the existing model is white noise and, as such, has no valuable information. We exploit the valuable information contained in the residuals of the models in the context of cumulative return and construct a new cumulative return gap (CRG) model to overcome the weaknesses of the traditional cumulative abnormal returns (CAR) and buy-and-hold abnormal returns (BHAR) models. To deal with the residual items of the prediction model and improving the prediction accuracy, we also lead the finite difference (FD) method into the autoregressive (AR) model and autoregressive distributed lag (ARDL) model. The empirical results of the study show that the cumulative return (CR) model is better than the simple return model for stock return prediction. We found that the CRG model can improve prediction accuracy, the term of the residuals from the autoregressive analysis is very important in stock return prediction, and the FD model can improve prediction accuracy.
Collapse
|
7
|
Zheng Y, Zhang L, Wang C, Wang K, Guo G, Zhang X, Wang J. Predictive analysis of the number of human brucellosis cases in Xinjiang, China. Sci Rep 2021; 11:11513. [PMID: 34075198 PMCID: PMC8169839 DOI: 10.1038/s41598-021-91176-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
Brucellosis is one of the major public health problems in China, and human brucellosis represents a serious public health concern in Xinjiang and requires a prediction analysis to help making early planning and putting forward science preventive and control countermeasures. According to the characteristics of the time series of monthly reported cases of human brucellosis in Xinjiang from January 2008 to June 2020, we used seasonal autoregressive integrated moving average (SARIMA) method and nonlinear autoregressive regression neural network (NARNN) method, which are widely prevalent and have high prediction accuracy, to construct prediction models and make prediction analysis. Finally, we established the SARIMA((1,4,5,7),0,0)(0,1,2)12 model and the NARNN model with a time lag of 5 and a hidden layer neuron of 10. Both models have high fitting performance. After comparing the accuracies of two established models, we found that the SARIMA((1,4,5,7),0,0)(0,1,2)12 model was better than the NARNN model. We used the SARIMA((1,4,5,7),0,0)(0,1,2)12 model to predict the number of monthly reported cases of human brucellosis in Xinjiang from July 2020 to December 2021, and the results showed that the fluctuation of the time series from July 2020 to December 2021 was similar to that of the last year and a half while maintaining the current prevention and control ability. The methodology applied here and its prediction values of this study could be useful to give a scientific reference for prevention and control human brucellosis.
Collapse
Affiliation(s)
- Yanling Zheng
- College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830054, People's Republic of China.
| | - Liping Zhang
- College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Chunxia Wang
- College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Kai Wang
- College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Gang Guo
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Xueliang Zhang
- College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830054, People's Republic of China.
| | - Jing Wang
- Department of Respiratory Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.
| |
Collapse
|