1
|
Yang Q, Zhang J, Fan Z. Association between volatile organic compounds exposure and infertility risk among American women aged 18-45 years from NHANES 2013-2020. Sci Rep 2024; 14:30711. [PMID: 39730403 DOI: 10.1038/s41598-024-80277-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/18/2024] [Indexed: 12/29/2024] Open
Abstract
The risk of infertility is progressively escalating over the years, and it has been established that exposure to environmental pollutants is closely linked to infertility. As a prevalent environmental pollutant in daily life, there is still a lack of substantial evidence on the association between volatile organic compounds (VOCs) exposure and infertility risk. This study aimed to examine the association between VOCs exposure and the risk of female infertility in the United States. Participant data sets from three cycles (2013-2020) were collected and downloaded from the National Health and Nutrition Examination Survey (NHANES), including demographics, examination, laboratory and questionnaire data. The baseline characteristics of the included population were evaluated, and the weighted quartile logistic regression was used to analyze the association between the urinary metabolites of VOCs (mVOCs) levels and the risk of infertility. Further exploration of the relationship between mVOCs and infertility was conducted by using 35 and 25 as the cut-off points for age and BMI subgroup analyses, respectively. Restricted cubic spline (RCS) was employed to elucidate the nonlinear relationship between mVOCs and infertility risk. Additionally, the Bayesian kernel machine regression (BKMR) model with 20,000 iterations was applied to elucidate the link between mVOCs and the risk of infertility when exposed to mixed or individual mVOCs. A total of 1082 women aged 18 to 45 years were included in this study, with 133 in the infertility group and 949 in the control group. The analysis of baseline characteristics suggested that urinary 34MHA, AMCC and DHBMA levels were significantly higher in the infertility group compared to the control group (p < 0.05). Quartile logistic regression analysis indicated that AAMA (Q3), AMCC (Q4), CYMA (Q3) and HPMMA (Q3) were positively associated with infertility risk in all models (p < 0.05). Subgroup analysis revealed different risk factors for infertility among various subgroups, with CYMA consistently showing a positive correlation with infertility risk in two age subgroups (p < 0.05). Furthermore, the association between mVOCs and infertility was observed only in the subgroup with BMI ≥ 25 kg/m2. RCS analysis indicated that 2MHA, ATCA, BMA, BPMA, CYMA, 2HPMA, 3HPMA and PGA exhibited linear dose-response relationships with infertility (p > 0.05), while the remaining variables showed nonlinear relationships (p < 0.05). The BKMR model demonstrated that the risk of female infertility exhibited an increasing trend with the accumulation of mVOCs co-exposure. A positive association between the exposure to mVOCs represented by 34MHA and AMCC and the risk of infertility was observed in this research. However, the inherent limitations associated with the cross-sectional study design necessitate the pursuit of additional prospective and experimental research to further elucidate and validate the relationships between various mVOCs exposure and female infertility.
Collapse
Affiliation(s)
- Qiaorui Yang
- Department of Gynecology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinfu Zhang
- Department of Gynecology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Gynecology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Zhenliang Fan
- Nephrology Department, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang, China.
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
2
|
Borgonovi SM, Iametti S, Speranza AR, Di Nunzio M. Cell culture models for assessing the effects of bioactive compounds in common buckwheat ( Fagopyrum esculentum): a systematic review. Food Funct 2024; 15:2799-2813. [PMID: 38390666 DOI: 10.1039/d4fo00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Common buckwheat (CBW) is grown and consumed worldwide. In addition to its already established reputation as an excellent source of nutrients, CBW is gaining popularity as a possible component of functional foods. Whereas human studies remain the gold standard for evaluating the relationship between nutrition and health, the development of reliable in vitro or ex vivo models has made it possible to investigate the cellular and molecular mechanisms of CBW effects on human health. Herein is a systematic review of studies on the biological effect of CBW supplementation, as assessed on various types of cellular models. Although the studies reported here have been conducted in very different experimental conditions, the overall effects of CBW supplementation were found to involve a decrease in cytokine secretion and oxidation products, related mainly to CBW polyphenols and protein or peptide fractions. These chemical species also appeared to be involved in the modulation of cell signaling and hormone secretion. Although further studies are undoubtedly necessary, as is their extension to in vivo systems, these reports suggest that CBW-based foods could be relevant to maintaining and/or improving human health and the quality of life.
Collapse
Affiliation(s)
- Sara Margherita Borgonovi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy.
| | - Stefania Iametti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy.
| | - Anna Ramona Speranza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy.
| | - Mattia Di Nunzio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
3
|
Li N, Zhou Y, Cai J, Wang Y, Zhou X, Hu M, Li Y, Zhang H, Li J, Cai B, Yuan X. A novel trans-acting lncRNA of ACTG1 that induces the remodeling of ovarian follicles. Int J Biol Macromol 2023:125170. [PMID: 37276900 DOI: 10.1016/j.ijbiomac.2023.125170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
Previous studies have implicated the attractive role of long noncoding RNAs (lncRNAs) in the remodeling of mammalian tissues. The migration of granulosa cells (GCs), which are the main supporting cells in ovarian follicles, stimulates the follicular remodeling. Here, with the cultured GCs as the follicular model, the actin gamma 1 (ACTG1) was observed to significantly promote the migration and proliferation while inhibit the apoptosis of GCs, suggesting that ACTG1 was required for ovarian remodeling. Moreover, we identified the trans-regulatory lncRNA of ACTG1 (TRLA), which was epigenetically targeted by histone H3 lysine 4 acetylation (H3K4ac). Mechanistically, the 2-375 nt of TRLA bound to ACTG1's mRNA to increase the expression of ACTG1. Furthermore, TRLA facilitated the migration and proliferation while inhibited the apoptosis of GCs, thereby accelerating follicular remodeling. Besides, TRLA acted as a ceRNA for miR-26a to increase the expression of high-mobility group AT-hook 1 (HMGA1). Collectively, TRLA induces the remodeling of ovarian follicles via complementary to ACTG1's mRNA and regulating miR-26a/HMGA1 axis in GCs. These observations revealed a novel and promising trans-acting lncRNA mechanism mediated by H3K4ac, and TRLA might be a new target to restore follicular remodeling and development.
Collapse
Affiliation(s)
- Nian Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yinqi Zhou
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiali Cai
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yifei Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiaofeng Zhou
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Mengting Hu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yubin Li
- Reproductive Medical Center, the First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong 510080, China
| | - Hao Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Bing Cai
- Reproductive Medical Center, the First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong 510080, China.
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
4
|
Sirotkin AV, Fabova Z, Aldahmash W, Alshamrani A, Harrath AH. Rooibos (Aspalathus linearis) and its constituent quercetin can suppress ovarian cell functions and their response to FSH. Physiol Res 2023; 72:269-280. [PMID: 37159860 PMCID: PMC10226404 DOI: 10.33549/physiolres.935060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/21/2023] [Indexed: 11/12/2023] Open
Abstract
Rooibos (Aspalathus linearis Brum. f) can directly influence female reproduction, but whether rooibos can influence the response of ovarian cells to FSH and whether the rooibos effects are due to the presence of quercetin remain unknown. We compared the influence of rooibos extract and quercetin (both at 10 µg/ml-1) on porcine ovarian granulosa cells cultured with and without FSH (0, 1, 10 or 100 ng/ml-1). The expression of intracellular proliferation (PCNA, cyclin B1) and apoptosis (bax, caspase 3) markers in the cells was detected by immunocytochemistry. The release of progesterone (P), testosterone (T) and estradiol (E) were evaluated with ELISAs. Administration of both rooibos and quercetin reduced the accumulation of proliferation markers and promoted the accumulation of apoptosis markers and the release of T and E. Rooibos stimulated, but quercetin inhibited, P output. Administration of FSH increased the accumulation of proliferation markers, decreased the accumulation of apoptosis markers, promoted the release of P and T, and had a biphasic effect on E output. The addition of both rooibos and quercetin mitigated or prevented the main effects of FSH. The present observations suggest a direct influence of both rooibos and quercetin on basic ovarian functions - proliferation, apoptosis, steroidogenesis and response to FSH. The similarity in the major effects of rooibos and its constituent quercetin indicates that quercetin could be the molecule responsible for the main rooibos effects on the ovary. The potential anti-reproductive effects of rooibos and rooibos constituent quercetin, should be taken into account in animal and human nutrition.
Collapse
Affiliation(s)
- A V Sirotkin
- Department of Zoology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | | | | | | | | |
Collapse
|
5
|
Effect of Xylene Oral Exposure on the Mouse Uterus – A Preliminary Study. FOLIA VETERINARIA 2022. [DOI: 10.2478/fv-2022-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abstract
Xylene is one of the environmental pollutants with a negative impact mainly on several organ systems. The aim of this study was to determine the effect of xylene on the uterus of mice. The study was performed on 12 adult female mice. Control mice (n = 6) were fed shredded pellets at a dose of 4 g per day. Xylene mice (n = 6) were fed the same diet at the same dose and orally administered xylene at 10 μl per day for 14 days. The mice were synchronized using the Whit-ten effect and introduced to males before the end of the procedure. Mice of both groups with no copulation plug were euthanized by cervical dislocation. The uteri were collected for routine histological and immunohistochemical analysis. The endometrial epithelium demonstrated vacuolar degeneration, mitotic cell activity, and the presence of leukocytes typical of metoestrus. Reductions of the endometrium, stroma, and myometrium were observed in the xylene mice. The xylene application did not have a significant effect on the superficial epithelium, or the size and number of uterine tubular glands. The immunohistochemical analysis of a proliferation marker PCNA revealed that the xylene increased its expression in the stroma, endometrial and myometrial cells, but did not significantly affect the superficial epithelial cells. The expression of an anti-apoptotic marker Bcl-xl in the xylene mice was stronger in the superficial epithelial, stromal, and endometrial cells. The Bcl-xl expression in the myometrial cells was similar to the controls. The results showed that the application of xylene stimulated the proliferation and exerted an anti-apoptotic effect on the uterine cells. However, the increased proliferation can lead to the malignant transformation of cells, resulting in their uncontrollable division.
Collapse
|
6
|
Dietary Supplementation of Flaxseed ( Linum usitatissimum L.) Alters Ovarian Functions of Xylene-Exposed Mice. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081152. [PMID: 36013331 PMCID: PMC9410228 DOI: 10.3390/life12081152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
The aim of the performed study was to examine the ability of xylene, flaxseed, and their combinations to affect morphological and endocrine indexes of murine ovaries. The 72 indexes of secondary and tertiary follicular cells, oocytes, corpora lutea, and ovarian stroma have been quantified: diameter, markers of proliferation PCNA and apoptosis caspase 3, receptors to FSH, oxytocin, estrogen (alpha and beta), and progesterone. In addition, concentrations of the ovarian hormones progesterone, estradiol, and IGF-I in the blood, as well as their production by isolated ovaries cultured with and without gonadotropins (FSH + LH mixture), were determined using histological, immunohistochemical, and immunoassay analyses. The character of xylene and flaxseed effects on ovarian functions in mice depended on the stage of ovarian folliculogenesis. It was shown that flaxseed could mitigate and prevent the major (63%) effects of xylene on the ovary. In addition, the ability of gonadotropins to affect ovarian hormone release and prevent its response to xylene has been shown. The effects of these additives could be mediated by changes in the release and reception of hormones. These observations suggest that flaxseed and possibly gonadotropins could be natural protectors of a female reproductive system against the adverse effects of xylene.
Collapse
|
7
|
Toxicological Effects of Technical Xylene Mixtures on the Female Reproductive System: A Systematic Review. TOXICS 2022; 10:toxics10050235. [PMID: 35622648 PMCID: PMC9144477 DOI: 10.3390/toxics10050235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023]
Abstract
Technical xylene is a compound of massive production that is used in applications such as petrochemical and healthcare laboratories. Exposure to xylene can cause acute and chronic effects in humans and animals. Currently available studies regarding xylene’s adverse effects with credible designs were dated almost twenty years ago. This systematic review summarizes the findings regarding the detrimental effects of technical xylene from human, animal, and in vitro studies. It recapitulated available studies with respect to the effects of xylene on the female reproductive system to stress the need for updating the current data and guidelines. Based on pre-specified criteria, 22 studies from journal databases exploring the toxic effects of xylene on menstruation, endocrine endpoints, fetal development, and reproductive functions were included for the review. It was found that related studies with a specific focus on the effects of technical xylene on the female reproductive system were insufficient. Therefore, further studies are necessary to update the existing data, thus improving the quality and reliability of risk assessment of exposure to xylene in pregnant women
Collapse
|
8
|
Tarko A, Štochmaľová A, Hrabovszká S, Vachanová A, Harrath AH, Aldahmash W, Grossman R, Sirotkin AV. Potential Protective Effect of Puncture Vine (Tribulus terrestris, L.) Against Xylene Toxicity on Bovine Ovarian Cell Functions. Physiol Res 2022; 71:249-258. [DOI: 10.33549/physiolres.934871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The action of the medicinal plant Tribulus terrestris (TT) on bovine ovarian cell functions, as well as the protective potential of TT against xylene (X) action, remain unknown. The aim of the present in vitro study was to elucidate the influence of TT, X and their combination on basic bovine ovarian cell functions. For this purpose, we examined the effect of TT (at doses of 0, 1, 10, and 100 ng/ml), X (at 20 μg/ml) and the combination of TT + X (at these doses) on proliferation, apoptosis and hormone release by cultured bovine ovarian granulosa cells. Markers of proliferation (accumulation of PCNA), apoptosis (accumulation of Bax) and the release of hormones (progesterone, testosterone and insulin-like growth factor I, IGF-I) were analyzed by quantitative immunocytochemistry and RIA, respectively. TT addition was able to stimulate proliferation and testosterone release and inhibit apoptosis and progesterone output. The addition of X alone stimulated proliferation, apoptosis and IGF-I release and inhibited progesterone and testosterone release by ovarian cells. TT was able to modify X effects: it prevented the antiproliferative effect of X, induced the proapoptotic action of X, and promoted X action on progesterone but not testosterone or IGF-I release. Taken together, our observations represent the first demonstration that TT can be a promoter of ovarian cell functions (a stimulator of proliferation and a suppressor of apoptosis) and a regulator of ovarian steroidogenesis. X can increase ovarian cell proliferation and IGF-I release and inhibit ovarian steroidogenesis. These effects could explain its anti-reproductive and cancer actions. The ability of TT to modify X action on proliferation and apoptosis indicates that TT might be a natural protector against some ovarian cell disorders associated with X action on proliferation and apoptosis, but it can also promote its adverse effects on progesterone release.
Collapse
Affiliation(s)
| | | | | | | | - AH Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | |
Collapse
|
9
|
Sirotkin AV. Rooibos (Aspalathus linearis) influence on health and ovarian functions. J Anim Physiol Anim Nutr (Berl) 2021; 106:995-999. [PMID: 34402103 DOI: 10.1111/jpn.13624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/12/2021] [Accepted: 08/04/2021] [Indexed: 12/23/2022]
Abstract
This paper reviews provenance, processing and properties of rooibos (Aspalathus linearis, Brum.f) and its numerous biologically active constituents, as well as the currently available knowledge concerning their physiological and medicinal effects and their possible extra- and intracellular mechanisms of action. Search for literature was performed in agreement with the preferred reporting items for systematic review criteria in Cochrane Library, PubMed, Web of Science and SCOPUS databases between the years 2000 and 2021. The limited number of in vitro studies suggests an influence of rooibos on basic ovarian cell functions, as well as its potential applicability to control female reproduction and prevent the effect of environmental contaminants on ovarian functions. Nevertheless, further studies are required for better understanding of the character and mechanisms of action, as well as of rooibos' application in reproductive biology and medicine.
Collapse
|