1
|
Zhen H, Yan X, Chen C, Liu H, Yang X, Su Y, Yang L, Wang X, Zhang Z. Removal of Fe(III)/Al(III)/Mg(II) by phosphonic group functionalized resin in wet-process phosphoric acid: Mechanism and intrinsic selectivity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27600-2. [PMID: 37209342 DOI: 10.1007/s11356-023-27600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Abstract
The removal of iron ions (Fe(III)), aluminum ions (Al(III)), and magnesium ions (Mg(II)) in phosphoric acid (H3PO4) solution is vital for the production of H3PO4 and supply of phosphate fertilizer. However, the mechanism and intrinsic selectivity for removal of Fe(III), Al(III), and Mg(II) from wet-process phosphoric acid (WPA) by phosphonic group (-PO3H2) functionalized MTS9500 are still unclear. In this work, the removal mechanisms were determined via combined analysis of FT-IR, XPS, molecular dynamics (MD), and quantum chemistry (QC) simulations based on density functional theory (DFT). The metal-removal kinetics and isotherms were further studied to confirm the removal mechanisms. The results indicate that Fe(III), Al(III), and Mg(II) interact with the -PO3H2 functional groups in MTS9500 resin with sorption energies of -126.22 kJ·mol-1, -42.82 kJ·mol-1, and -12.94 kJ·mol-1, respectively. Moreover, the intrinsic selectivities of the resin for Fe(III), Al(III), and Mg(II) removal were quantified by the selectivity coefficient (Si/j). The SFe(III)/Al(III), SFe(III)/Mg(II) and SAl(III)/Mg(II) are 18.2, 55.1 and 3.02, respectively. This work replenishes sorption theory that can be used in the recycling of electronic waste treatment acid, sewage treatments, hydrometallurgy, and purification of WPA in industry.
Collapse
Affiliation(s)
- Honggang Zhen
- School of Chemical Engineering, Sichuan University, 24 South 1st Section, 1st Ring Road, Wuhou District, Chengdu, 610065, Sichuan, China
| | - Xuefang Yan
- School of Chemical Engineering, Sichuan University, 24 South 1st Section, 1st Ring Road, Wuhou District, Chengdu, 610065, Sichuan, China
| | - Chaojiu Chen
- School of Chemical Engineering, Sichuan University, 24 South 1st Section, 1st Ring Road, Wuhou District, Chengdu, 610065, Sichuan, China
| | - Haozhou Liu
- School of Chemical Engineering, Sichuan University, 24 South 1st Section, 1st Ring Road, Wuhou District, Chengdu, 610065, Sichuan, China
| | - Xiuying Yang
- School of Chemical Engineering, Sichuan University, 24 South 1st Section, 1st Ring Road, Wuhou District, Chengdu, 610065, Sichuan, China
| | - Yingli Su
- School of Chemical Engineering, Sichuan University, 24 South 1st Section, 1st Ring Road, Wuhou District, Chengdu, 610065, Sichuan, China
| | - Lin Yang
- School of Chemical Engineering, Sichuan University, 24 South 1st Section, 1st Ring Road, Wuhou District, Chengdu, 610065, Sichuan, China.
| | - Xinlong Wang
- School of Chemical Engineering, Sichuan University, 24 South 1st Section, 1st Ring Road, Wuhou District, Chengdu, 610065, Sichuan, China
| | - Zhiye Zhang
- School of Chemical Engineering, Sichuan University, 24 South 1st Section, 1st Ring Road, Wuhou District, Chengdu, 610065, Sichuan, China
| |
Collapse
|
2
|
Zhang C, Liu X, Jiang M, Wen Y, Zhang J, Qian G. A review on identification, quantification, and transformation of active species in SCR by EPR spectroscopy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28550-28562. [PMID: 36708481 DOI: 10.1007/s11356-023-25467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Electron paramagnetic resonance (EPR) is the only technique that provides direct detection of free radicals and samples that contain unpaired electrons. Thus, EPR had an important potential application in the field of selective catalytic reduction of nitrogen oxide (SCR). For the first time, this work reviewed recent developments of EPR in charactering SCR. First, qualitative analysis focused on recognizing Cu, Fe, V, Ti, Mn, and free-radical (oxygen vacancy and superoxide radical) species. Second, quantification of the active species was obtained by a double-integral and calibration method. Third, the active species evolved because of different thermal treatments and redox-thermal processes under reductants (NH3 and NO). The coordination information of the active species in catalysts and their effects on SCR performances were concluded from mechanism viewpoints. Finally, potential perspectives were put forward for EPR developments in characterizing the SCR processes in the future. After all, EPR characterization will help to have a deep understanding of structure-activity relationship in one catalyst.
Collapse
Affiliation(s)
- Chenchen Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai, 200444, People's Republic of China
| | - Xinyu Liu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai, 200444, People's Republic of China
| | - Meijia Jiang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai, 200444, People's Republic of China
| | - Yuling Wen
- Shanghai SUS Environment Co., LTD, Shanghai, 201703, China
| | - Jia Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai, 200444, People's Republic of China.
| | - Guangren Qian
- MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi, 337022, People's Republic of China
| |
Collapse
|
3
|
Sahu N, Nayak AK, Verma L, Bhan C, Singh J, Chaudhary P, Yadav BC. Adsorption of As(III) and As(V) from aqueous solution by magnetic biosorbents derived from chemical carbonization of pea peel waste biomass: Isotherm, kinetic, thermodynamic and breakthrough curve modeling studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114948. [PMID: 35344875 DOI: 10.1016/j.jenvman.2022.114948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 02/01/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
The purpose of this research was to investigate the adsorption of arsenic (As) from aqueous solutions using MPAC-500 and MPAC-600 (magnetic-activated carbons synthesized from the peel of Pisum sativum (pea) pyrolyzed at 500 °C and 600 °C temperatures, respectively). The potential of both biosorbents for As adsorption was determined in batch and column mode. The characterization of both biosorbents was performed by energy dispersive spectroscopy, scanning electron microscope, pHZPC, particle size distribution, X-ray diffraction, zeta potential and Fourier-transform infrared spectroscopy. It was found that the efficiency of MPAC-600 was better than MPAC-500 for the adsorption of As(III) and As(V) ions. The adsorption capacities of MPAC-500 and MPAC-600 in removing As(III) were 0.7297 mg/g and 1.3335 mg/g, respectively, while the values of Qmax for As(V) on MPAC-500 and MPAC-600 were 0.4930 mg/g and 0.9451 mg/g, respectively. The Langmuir isotherm model was found to be the best fit for adsorption of As(III) by MPAC-500 and MPAC-600, as well as adsorption of As(V) by MPAC-500. The Freundlich isotherm model, on the other hand, was optimal for As(V) removal with MPAC-600. With R2 values close to unity, the pseudo-second-order kinetics were best fitted to the adsorption process of both As species. The Thomas model was used to estimate the breakthrough curves. The effects of coexisting oxyanions and regeneration studies were also carried out to examine the influence of oxyanions on As adsorption and reusability of biosorbents.
Collapse
Affiliation(s)
- Naincy Sahu
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Ashish Kumar Nayak
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Lata Verma
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Chandra Bhan
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Jiwan Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India.
| | - Priyanka Chaudhary
- Nanomaterials and Sensors Research Laboratory, Department of Applied Physics, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Bal Chandra Yadav
- Nanomaterials and Sensors Research Laboratory, Department of Applied Physics, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| |
Collapse
|
4
|
Research Progress on Adsorption of Arsenic from Water by Modified Biochar and Its Mechanism: A Review. WATER 2022. [DOI: 10.3390/w14111691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Arsenic (As) is a non-metallic element, which is widely distributed in nature. Due to its toxicity, arsenic is seriously harmful to human health and the environment. Therefore, it is particularly important to effectively remove arsenic from water. Biochar is a carbon-rich adsorption material with advantages such as large specific surface area, high porosity, and abundant functional groups, but the original biochar has limitations in application, such as limited adsorption capacity and adsorption range. The modified biochar materials have largely enhanced the adsorption capacity of As in water due to their improved physicochemical properties. In this review, the changes in the physicochemical properties of biochar before and after modification were compared by SEM, XRD, XPS, FT-IR, TG, and other characterization techniques. Through the analysis, it was found that the adsorbent dosage and pH are the major factors that influence the As adsorption capacity of the modified biochar. The adsorption process of As by biochar is endothermic, and increasing the reaction temperature is conducive to the progress of adsorption. Results showed that the main mechanisms include complexation, electrostatic interaction, and precipitation for the As removal by the modified biochar. Research in the field of biochar is progressing rapidly, with numerous achievements and new types of biochar-based materials prepared with super-strong adsorption capacity for As. There is still much space for in-depth research in this field. Therefore, the future research interests and applications are put forward in this review.
Collapse
|
5
|
Zoroufchi Benis K, Behnami A, Aghayani E, Farabi S, Pourakbar M. Water recovery and on-site reuse of laundry wastewater by a facile and cost-effective system: Combined biological and advanced oxidation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:148068. [PMID: 34323830 DOI: 10.1016/j.scitotenv.2021.148068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 06/13/2023]
Abstract
Combined biological and physicochemical process was selected for treatment of laundry wastewater. The results show that after microbial adaptation, almost 91% of COD was removed at food to microorganism (F/M) ratio of 0.12 gBOD/gMLSS·d. Dehydrogenase activity of the biomass showed an increasing trend and finally reached 3.8 μgTFgbiomass.d corresponding to the highest process performance. 16SrRNA fragment and phylogenetic analysis identified Pseudomonas pharmacofabricae and Bacillus spp. as the dominant bacteria. The effluent of the biological process was then injected into the UV/O3 process for complete removal of residual COD and detergent. Finally, microfiltration and ultrafiltration were used to remove any remaining suspended solids. The operating cost analysis showed that 0.65 €/m3 treated wastewater is required for treatment of the laundry wastewater. Accordingly, the suggested combination of the biological and physicochemical process could be a promising and highly efficient process for treatment and reuse of laundry wastewater.
Collapse
Affiliation(s)
- Khaled Zoroufchi Benis
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ali Behnami
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Ehsan Aghayani
- Department of Environmental Health Engineering, Abadan Faculty of Medical Sciences, Abadan, Iran
| | | | - Mojtaba Pourakbar
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
6
|
Keivaninahr F, Gadkari P, Zoroufchi Benis K, Tulbek M, Ghosh S. Prediction of emulsification behaviour of pea and faba bean protein concentrates and isolates from structure–functionality analysis. RSC Adv 2021; 11:12117-12135. [PMID: 35423776 PMCID: PMC8696636 DOI: 10.1039/d0ra09302e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/07/2021] [Indexed: 12/03/2022] Open
Abstract
The effects of different extraction methods on the structure–functionality and emulsification behaviour of pea and faba bean protein isolates, and concentrates were studied at pH 7 and 2, and a regression model was developed to predict emulsion characteristics based on protein properties. The concentrates produced by air classification had lower protein content but higher solubility in water compared to the isolates produced by isoelectric precipitation. The protein secondary structure did not show a consistent difference; however, much higher intrinsic fluorescence was observed for the soluble compared to the insoluble fractions. Interfacial tension of all faba proteins was lower than pea, while there was no significant difference between the concentrates and isolates. The higher protein content of the isolates was found to improve their water holding capacity. Canola oil (40 wt%)-in-water coarse emulsions, prepared with 2 wt% proteins and 0.25 wt% xanthan gum showed smaller particle size at pH 7 than pH 2, while the zeta potential, viscosity and gel strength were higher at pH 7. Emulsions stabilized with concentrates were better or comparable to the isolates in terms of particle size, zeta potential, and microstructure. The regression model predicted that an increase in solubility, intrinsic fluorescence, water and oil holding capacities are more favourable to decrease emulsion particle size, while an increase in solubility, intrinsic fluorescence would lead to higher emulsion destabilization. A decrease in interfacial tension was more favourable to lower destabilization. Emulsion viscosity was more dependent on water holding capacity compared to any other factor. Such models could be extremely beneficial for the food industry to modulate processing for the development of desired pulse protein ingredients. The effects of different extraction methods on the structure–functionality and emulsification behaviour of pea and faba bean proteins were studied, and a regression model was developed to predict emulsion characteristics based on protein properties.![]()
Collapse
Affiliation(s)
- Fatemeh Keivaninahr
- Department of Food and Bioproduct Sciences
- College of Agriculture and Bioresources
- University of Saskatchewan
- Saskatoon
- Canada
| | - Pravin Gadkari
- Department of Food and Bioproduct Sciences
- College of Agriculture and Bioresources
- University of Saskatchewan
- Saskatoon
- Canada
| | - Khaled Zoroufchi Benis
- Department of Chemical and Biological Engineering
- University of Saskatchewan
- Saskatoon
- Canada
| | | | - Supratim Ghosh
- Department of Food and Bioproduct Sciences
- College of Agriculture and Bioresources
- University of Saskatchewan
- Saskatoon
- Canada
| |
Collapse
|