1
|
Luo M, Liu J, Zhang Y, Wang T, Ren X, Gui L, Zhao J, Zhang X, Tang Y, Zeng Z, Hou F, Zhong Q, Yuan Z, Xu H. Amine response smartphone-based portable and intelligent polyvinyl alcohol films for real-time detection of shrimp freshness. Food Chem 2024; 450:139347. [PMID: 38653047 DOI: 10.1016/j.foodchem.2024.139347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Food freshness monitoring is an important component in ensuring food safety for consumers and the food industry. Therefore, there is an urgent need for a portable, low-cost, and efficient detection method to determine the freshness. In this study, polyvinyl alcohol (PVA) was used as polymer carrier to prepare electrospinning film containing curcumin (Cur) and gardenia blue (GB) as intelligent indicator label on food packaging for real-time nondestructive detection of freshness of shrimp. The detection limit of ammonia response is less than or equal to 20 ppm, and the detection time is about 1 min, indicating that it has a sensitive response effect. At the same time, a smartphone application that can identify amines in response to color changes has been developed, and consumers can understand freshness by scanning the label. This study demonstrates the huge potential of smart indicator labels for food freshness monitoring.
Collapse
Affiliation(s)
- Man Luo
- Department of Food Quality and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Ji Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Yating Zhang
- Department of Food Quality and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Tao Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Xiaomei Ren
- Department of Food Quality and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Lijuan Gui
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Junyuan Zhao
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Xuwei Zhang
- Department of Food Quality and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yunqing Tang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Ziting Zeng
- Department of Food Quality and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fengzhen Hou
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Qifeng Zhong
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Hui Xu
- Department of Food Quality and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
2
|
Leenders SHAM, Pankratova G, Wijenberg J, Romanuka J, Gharavi F, Tsou J, Infantino M, van Haandel L, van Paasen S, Just PE. Amine Adsorbents Stability for Post-Combustion CO 2 Capture: Determination and Validation of Laboratory Degradation Rates in a Multi-staged Fluidized Bed Pilot Plant. CHEMSUSCHEM 2023; 16:e202300930. [PMID: 37589250 DOI: 10.1002/cssc.202300930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023]
Abstract
Alternative to current liquid amine technologies for post-combustion CO2 capture, new technologies such as adsorbent-based processes are developed, wherein material lifetime and degradation is important. Herein a robust method to determine degradation rates in a laboratory setup is developed, which was validated with a continuous multi-staged fluidized bed pilot plant designed to capture 1 ton CO2 per day. An amine functionalized polystyrene adsorbent showed very good agreement between the experimental 1000-hour laboratory degradation rates and 2200 hours of degradation in a pilot plant. This validates how laboratory experiments can be extrapolated for sorbent screening and for scale-up. Resulting, the oxidative degradation in the desorber at high temperatures (120 °C) and low O2 concentrations (150 ppmv) is 3 times higher compared to the adsorber at low temperatures and high O2 (56 °C, 7 vol %). Laboratory degradation experiments can hence be used to further optimize process operations to limit degradation or screen for potential new adsorbents.
Collapse
Affiliation(s)
- Stefan H A M Leenders
- Shell Global Solutions International B.V., Grasweg 31, 1031 HW, Amsterdam, the Netherlands
| | - Galina Pankratova
- Shell Global Solutions International B.V., Grasweg 31, 1031 HW, Amsterdam, the Netherlands
| | - John Wijenberg
- Shell Global Solutions International B.V., Grasweg 31, 1031 HW, Amsterdam, the Netherlands
| | - Julija Romanuka
- Shell Global Solutions International B.V., Grasweg 31, 1031 HW, Amsterdam, the Netherlands
| | - Farahnaz Gharavi
- Shell Global Solutions International B.V., Grasweg 31, 1031 HW, Amsterdam, the Netherlands
| | - Joana Tsou
- Shell Global Solutions International B.V., Grasweg 31, 1031 HW, Amsterdam, the Netherlands
| | - Melina Infantino
- Shell Global Solutions International B.V., Grasweg 31, 1031 HW, Amsterdam, the Netherlands
| | - Lennart van Haandel
- Shell Global Solutions International B.V., Grasweg 31, 1031 HW, Amsterdam, the Netherlands
| | - Sander van Paasen
- Shell Global Solutions International B.V., Grasweg 31, 1031 HW, Amsterdam, the Netherlands
| | - Paul-Emmanuel Just
- Shell Global Solutions International B.V., Grasweg 31, 1031 HW, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Roosen M, Harinck L, Ügdüler S, De Somer T, Hucks AG, Belé TGA, Buettner A, Ragaert K, Van Geem KM, Dumoulin A, De Meester S. Deodorization of post-consumer plastic waste fractions: A comparison of different washing media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152467. [PMID: 34952061 DOI: 10.1016/j.scitotenv.2021.152467] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/17/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
An important impediment to the acceptance of recyclates into a broader market is their unwanted odor after reprocessing. Different types of washing procedures are already in place, but fundamental insights into the deodorization efficiencies of different washing media are still relatively scarce. Therefore, in this study, the deodorization efficiencies of different types of plastics after washing with different media were determined via gas chromatography and mass spectrometry analysis. A total of 169 compounds subdivided into various chemical classes, such as alkanes, terpenes, and oxygenated compounds, were detected across all packaging types. Around 60 compounds were detected on plastic bottles, and around 40 were detected on trays and films. Owing to the differences in physicochemical properties of odor compounds, different deodorization efficiencies were obtained with different washing media. Water and caustic soda were significantly more efficient for poly(ethylene terephthalate) bottles with deodorization efficiencies up to 80%, whereas for polyethylene (PE) and polypropylene bottles, the washing media were relatively inefficient (around 30-40%). Adding a detergent or an organic solvent could increase deodorization efficiencies by up to 70-90% for these packaging types. A similar trend was observed for PE films having deodorization efficiencies in the range of 40-50% when washing with water or caustic soda and around 70-80% when a detergent was added. Polystyrene trays were most effectively deodorized with a detergent, achieving efficiencies up to 67%. Hence, this study shows that optimal washing processes should be tailored to specific packaging types to further improve deodorization and to eventually be able to meet ambitious European recycling targets.
Collapse
Affiliation(s)
- Martijn Roosen
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Lies Harinck
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Sibel Ügdüler
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium; Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, Technologiepark 125, B-9052 Zwijnaarde, Belgium
| | - Tobias De Somer
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium; Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, Technologiepark 125, B-9052 Zwijnaarde, Belgium
| | - Amaury-Gauvain Hucks
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Tiago G A Belé
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Henkestraße 9, 91054 Erlangen, Germany
| | - Andrea Buettner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Henkestraße 9, 91054 Erlangen, Germany; Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany
| | - Kim Ragaert
- Center for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark 130, B-9052 Zwijnaarde, Belgium
| | - Kevin M Van Geem
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, Technologiepark 125, B-9052 Zwijnaarde, Belgium
| | - Ann Dumoulin
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Steven De Meester
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium.
| |
Collapse
|
4
|
Identification of Catenary Performance Degradation Based on Gath Geva Clustering and Improved Support Vector Date Description. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-06393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Abbasghorbani M, Farajmand B, Vahidi M, Zamaniyan A. Application of cation-exchange chromatography for quantification of some ethanolamine degradation products in the natural gas sweetening solution. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|