1
|
Khalifa AI, Alshandoudi LM, Hassan AF, Braish AG. Effective removal of As 5+ from aqueous medium using date palm fiber biochar/chitosan/glutamine nanocomposite: kinetic and thermodynamic studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3760-3775. [PMID: 39833583 DOI: 10.1007/s11356-025-35896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
In the current work, three adsorbent materials were developed: biochar derived from date palm fiber (C), date palm fiber biochar/chitosan nanoparticles (CCS), and biochar/chitosan nanoparticle composite supplemented with glutamine (CCSG). These compounds were used as solid adsorbents to remove As5+ from polluted water. Several characterization approaches were used to investigate all the synthesized solid adsorbents, including thermogravimetric analysis, N2 adsorption/desorption isotherm, scanning electron microscopy, transmission electron microscopy (TEM), attenuated total reflectance with Fourier transform infrared, and zeta potential. Date palm fiber biochar/chitosan/glutamine nanocomposite (CCSG) demonstrated good thermal stability, with a maximum specific surface area of 518.69 m2/g, a mesoporous size of 2.06 nm, total pore volume of 0.25 cm3/g, TEM average particle size of 38 nm, and pHPZC of 6.9. Contact time (5-60 min), pH (1-9), starting As5+ concentration (50-500 mg/L), adsorbent dose (0.1-2.0 g/L), temperature (27-45 °C), and ionic strength (0.05-0.40 mol/L) were among the sorption parameters that were investigated in order to improve the adsorption conditions. It is observed that the modified samples were effectively able to remove As5+ (CCS; 256.0 and CCSG; 376.0 mg/g) than unmodified ones (C; 150.5 mg/g). The As5+ removal procedure corresponded well with Langmuir isotherm model. Thermodynamic and kinetic experiments show that the Elovich, pseudo-first order, and Van't Hoff plot with endothermic, spontaneous, and physisorption nature are the best fitted models. EDTA has the highest desorption efficiency percentage (98.8%). CCSG demonstrated enhanced reusability after six application cycles of As5+ adsorption/desorption, with only a 4% decrease in the efficiency of adsorption. This work shows that adding glutamine to the DPF biochar/chitosan composite reinforces it, resulting in the fabrication of a solid adsorbent that shows promise for use in water remediation.
Collapse
Affiliation(s)
- Al Isaee Khalifa
- Science Department, Rustaq College of Education, University of Technology and Applied Sciences, Rustaq, Sultanate of Oman
| | - Laila M Alshandoudi
- Science Department, Rustaq College of Education, University of Technology and Applied Sciences, Rustaq, Sultanate of Oman
| | - Asaad F Hassan
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour, Egypt.
| | - Amany G Braish
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
2
|
Khamis MM, Elsherbiny AS, Salem IA, El-Ghobashy MA. Copper supported Dowex50WX8 resin utilized for the elimination of ammonia and its sustainable application for the degradation of dyes in wastewater. Sci Rep 2024; 14:19884. [PMID: 39191881 DOI: 10.1038/s41598-024-69839-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
To obtain high efficient elimination of ammonia (NH4+) from wastewater, Cu(II), Ni(II), and Co(II)) were loaded on Dowex-50WX8 resin (D-H) and studied their removal efficiency towards NH4+ from aqueous solutions. The adsorption capacity of Cu(II)-loaded on D-H (D-Cu2+) towards NH4+ (qe = 95.58 mg/g) was the highest one compared with that of D-Ni2+ (qe = 57.29 mg/g) and D-Co2+ (qe = 43.43 mg/g). Detailed studies focused on the removal of NH4+ utilizing D-Cu2+ were accomplished under various experimental conditions. The pseudo-second-order kinetic model fitted well the adsorption data of NH4+ on D-Cu2+. The non-linear Langmuir model was the best model for the adsorption process, producing a maximum equilibrium adsorption capacity (qmax = 280.9 mg/g) at pH = 8.4, and 303 K in less than 20 min. The adsorption of NH4+ onto D-Cu2+ was an exothermic and spontaneous process. In a sustainable step, the resulting D-Cu(II)-ammine composite from the NH4+ adsorption process displayed excellent catalytic activity for the degradation of aniline blue (AB) and methyl violet 2B (MV 2B) dyes utilizing H2O2 as an eco-friendly oxidant.
Collapse
Affiliation(s)
- Mohamed M Khamis
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Abeer S Elsherbiny
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Ibrahim A Salem
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Marwa A El-Ghobashy
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
3
|
Wu J, Yang X, Xu D, Ong SL, Hu J. Peroxydisulfate-based Non-radical Oxidation of Rhodamine B by Fe-Mn Doped Granular Activated Carbon: Kinetics and Mechanism Study. Chem Asian J 2024; 19:e202400482. [PMID: 38884566 DOI: 10.1002/asia.202400482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
While numerous persulfate-based advanced oxidation processes (AOPs) have been studied based on fancy catalysts, the practical combination of Fe or Mn modified granular activated carbon (GAC) has seldom been investigated. The present study focused on a green and readily synthesized Fe-Mn bimetallic oxide doped GAC (Fe-Mn@GAC), to uncover its catalytic kinetics and mechanism when used in the peroxydisulfate (PDS)-based oxidation process for degrading Rhodamine B (RhB), a representative xenobiotic dye. The synthesized Fe-Mn@GAC was characterized by SEM-EDS, XRD, ICP-OES and XPS analyses to confirm its physicochemical properties. The catalytic kinetics of Fe-Mn@GAC+PDS system were evaluated under varying conditions, including PDS and catalyst dosages, solution pH, and the presence of anions. It was found Fe-Mn@GAC exhibited robust catalytic performance, being insensitive to a wide pH range from 3 to 11, and the presence of anions such as Cl-, SO4 2-, NO3 - and CO3 2-. The catalytic mechanism was investigated by EPR and quenching experiments. The results indicated the catalytic system processed a non-radical oxidation pathway, dominated by direct electron transfer between RhB and Fe-Mn@GAC, with singlet oxygen (1O2) playing a secondary role. The catalytic system also managed to maintain a RhB removal above 81 % in successive 10 cycles, and recover to 89.5 % after simple DI water rinse, showing great reusability. The catalytic system was further challenged by real dye-containing wastewater, achieving a decolorization rate of 84.5 %. This work not only provides fresh insight into the kinetics and mechanism of the Fe-Mn@GAC+PDS catalytic system, but also demonstrates its potential in the practical application in real dye-containing wastewater treatment.
Collapse
Affiliation(s)
- Jiahua Wu
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, No.377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Xuan Yang
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, No.377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Dong Xu
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, No.377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Say Leong Ong
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, No.377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| | - Jiangyong Hu
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, No.377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| |
Collapse
|
4
|
El-Khalafy SH, Hassanein MT, Alaskary MM, Salahuddin NA. Synthesis and characterization of Co(II) porphyrin complex supported on chitosan/graphene oxide nanocomposite for efficient green oxidation and removal of Acid Orange 7 dye. Sci Rep 2024; 14:17073. [PMID: 39048588 PMCID: PMC11269599 DOI: 10.1038/s41598-024-65517-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Catalytic degradation of Acid Orange 7 (AO7) by hydrogen peroxide in an aqueous solution has been investigated using cobalt(II) complex of 5, 10, 15, 20 Tetrakis [4-(hydroxy)phenyl] porphyrin [Co(II) TPHPP] covalently supported chitosan/Graphene Oxide nanocomposite [Co(II) TPHPP]-Cs/GO, as highly efficient and recoverable heterogeneous catalyst. The structures and properties of [Co(II) TPHPP]-Cs/GO nanocomposite were characterized by techniques such as UV-Vis, FT-IR, SEM, EDX, TEM, and XRD. The oxidation reaction was followed by recording the UV-Vis spectra of the reaction mixture with time at λmax = 485 nm. [Co(II) TPHPP]-Cs/GO nanocomposite demonstrated high catalytic activity and could decompose 94% of AO7 within 60 min. The factors that may influence the oxidation of Acid Orange 7, such as the effect of reaction temperature, pH, concentration of catalyst, Acid Orange 7, and hydrogen peroxide, have been studied. The results of total organic carbon analysis (TOC) showed 50% of dye mineralization under mild reaction conditions of AO7 (1.42 × 10-4M) with H2O2 (8 × 10-2M) in the presence of [Co(II) TPHPP]-Cs/GO nanocomposite (15 × 10-3 g/ml) and pH = 9 at 40 °C. The reuse and stability of the nanocomposite were examined and remarkably, even after six cycles of reuse, there was no significant degradation or deactivation of the recycled catalyst. Residual organic compounds in the reaction mixture were identified by using GC-MS analyses. The radical scavenging measurements and photoluminescence probing technology of disodium salt of terephthalic acid indicated the formation of the hydroxyl radical as the reactive oxygen species in the [Co(II) TPHPP]-Cs/GO nanocomposite/H2O2 system. A mechanism for the oxidation reaction has been discussed.
Collapse
Affiliation(s)
- Sahar H El-Khalafy
- Department of Chemistry, Faculty of Science, University of Tanta, Tanta, 31527, Egypt.
| | - Mahmoud T Hassanein
- Department of Chemistry, Faculty of Science, University of Tanta, Tanta, 31527, Egypt
| | - Mohamed M Alaskary
- Department of Chemistry, Faculty of Science, University of Tanta, Tanta, 31527, Egypt
| | - Nehal A Salahuddin
- Department of Chemistry, Faculty of Science, University of Tanta, Tanta, 31527, Egypt
| |
Collapse
|
5
|
Kumar Y, Sudhaik A, Sharma K, Sonu, Raizada P, Aslam Parwaz Khan A, Nguyen VH, Ahamad T, Singh P, Asiri AM. Construction of magnetically separable novel arrow down dual S-scheme ZnIn2S4/BiOCl/FeVO4 heterojunction for improved photocatalytic activity. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
El-Ghobashy MA, Salem IA, El-Dahrawy WM, Salem MA. Fabrication of α-MnO2/Fe-Mn binary oxide nanocomposite as an efficient adsorbent for the removal of methylene blue from wastewater. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Zhu Q, Song J, Liu Z, Wu K, Li X, Chen Z, Pang H. Photothermal catalytic degradation of textile dyes by laccase immobilized on Fe3O4@SiO2 nanoparticles. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Bucatariu F, Teodosiu C, Morosanu I, Fighir D, Ciobanu R, Petrila LM, Mihai M. An Overview on Composite Sorbents Based on Polyelectrolytes Used in Advanced Wastewater Treatment. Polymers (Basel) 2021; 13:3963. [PMID: 34833262 PMCID: PMC8625399 DOI: 10.3390/polym13223963] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 01/19/2023] Open
Abstract
Advanced wastewater treatment processes are required to implement wastewater reuse in agriculture or industry, the efficient removal of targeted priority and emerging organic & inorganic pollutants being compulsory (due to their eco-toxicological and human health effects, bio-accumulative, and degradation characteristics). Various processes such as membrane separations, adsorption, advanced oxidation, filtration, disinfection may be used in combination with one or more conventional treatment stages, but technical and environmental criteria are important to assess their application. Natural and synthetic polyelectrolytes combined with some inorganic materials or other organic or inorganic polymers create new materials (composites) that are currently used in sorption of toxic pollutants. The recent developments on the synthesis and characterization of composites based on polyelectrolytes, divided according to their macroscopic shape-beads, core-shell, gels, nanofibers, membranes-are discussed, and a correlation of their actual structure and properties with the adsorption mechanisms and removal efficiencies of various pollutants in aqueous media (priority and emerging pollutants or other model pollutants) are presented.
Collapse
Affiliation(s)
- Florin Bucatariu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (F.B.); (L.-M.P.)
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| | - Carmen Teodosiu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| | - Irina Morosanu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| | - Daniela Fighir
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| | - Ramona Ciobanu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| | - Larisa-Maria Petrila
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (F.B.); (L.-M.P.)
| | - Marcela Mihai
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (F.B.); (L.-M.P.)
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| |
Collapse
|
9
|
Cu(II) Schiff base complex functionalized mesoporous silica nanoparticles as an efficient catalyst for the synthesis of questiomycin A and photo-Fenton-like rhodamine B degradation. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|