1
|
Wang H, Li Z, Wang J, Liu Y, Xiao G, Quan H, Chen X, Zhang S. Independent and joint air pollutants exposure associated with kidney dysfunction mediating by hematocyte. Sci Rep 2025; 15:10033. [PMID: 40122905 PMCID: PMC11930966 DOI: 10.1038/s41598-025-95204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/19/2025] [Indexed: 03/25/2025] Open
Abstract
Air pollution is associated with hyperuricemia; however, its underlying mechanism remains poorly understood. In this retrospective analysis, 233 anonymous health data and urban air pollutants data were obtained. The mean daily exposure dose (DED) for combined air pollutants (CAPs) was 1.22 mg/day, which was defined as the threshold for dividing all individuals into two groups. The lower-exposure group (LEG) included those with a DED-CAPs less than or equal to 1.22 mg/day and the higher-exposure group (HEG) included those with a DED-CAPs that exceeded 1.22 mg/day. The peripheral blood cell counts of white blood cells, eosinophils, basophils, monocytes, and red blood cells were higher in the HEG than in the LEG, whereas peripheral platelet counts were lower in the HEG than in the LEG. In addition, serum uric acid (UA) levels were higher in the HEG than in the LEG. Multivariable-adjusted linear regression models suggested that with an increase in the daily exposure dose to air pollution, peripheral blood cells and serum UA levels increased. The results of mediation effect models further indicated that peripheral monocyte counts play a mediating role in the dose effect relationships between air pollutant exposures and serum UA levels. These results highlight that air pollution may increase serum UA levels by altering hematocytes inducing low-grade inflammation, which may ultimately increase the risk of kidney dysfunction.
Collapse
Affiliation(s)
- Huanhuan Wang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, 610051, Sichuan, People's Republic of China
| | - Zhongcheng Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, 610051, Sichuan, People's Republic of China
| | - Jing Wang
- Department of Laboratory Medicine, Mianyang Central Hospital, Mianyang, 621000, Sichuan, People's Republic of China
| | - Yanting Liu
- Department of Laboratory Medicine, Suining Central Hospital, Suining, 629000, Sichuan, People's Republic of China
| | - Guangjun Xiao
- Department of Laboratory Medicine, Suining Central Hospital, Suining, 629000, Sichuan, People's Republic of China
| | - Hui Quan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, 610051, Sichuan, People's Republic of China
| | - Xi Chen
- Department of Laboratory Medicine, Mianyang Central Hospital, Mianyang, 621000, Sichuan, People's Republic of China
| | - Shaocheng Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, 610051, Sichuan, People's Republic of China.
- Western Institute of Digital-Intelligent Medicine, Chongqing, 401329, People's Republic of China.
- School of Medicine, Chongqing University, Chongqing, 400030, People's Republic of China.
- Chongqing Precision Medicine Industrial Technology Research Institute, Chongqing, 400799, People's Republic of China.
| |
Collapse
|
2
|
Wang X, Lv Y, Luo W, Duan X. Patterns of Resident Activity and Their Impact on Environmental Parameters in Residential Apartments: Case Study and Implications for Design and Management. INDOOR AIR 2024; 2024. [DOI: 10.1155/2024/4404849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/24/2024] [Indexed: 01/04/2025]
Abstract
In the quest to optimize residential environments for health and sustainability, understanding the interaction between pedestrian dynamics and environmental parameters is crucial. This study delves into this intersection by conducting a detailed spatial‐temporal analysis within an apartment building. The research reveals pivotal insights about the relationship between pedestrian flow and environmental quality. Key findings reveal distinct patterns in pedestrian traffic, with two main peaks in early morning and late evening, accounting for approximately 24% of daily movement. The study identifies a pronounced preference for upward elevator use, reflecting residents’ lifestyle and floor‐level choices. Importantly, we observed variable correlations between pedestrian flow and environmental pollutants. Pollutants like PM2.5 and carbon monoxide exhibited weak correlations, while noise, TVOC, formaldehyde, and ozone showed stronger associations with human movement. The research uncovered significant spatial differences in pollutant levels across the building, with higher particulate matter and ozone levels in the seventh‐floor elevator room. The data suggest a need for tailored pollution management strategies, especially for noise and hazardous compounds like formaldehyde and ozone, which exceed safety limits in certain areas. Our findings offer critical insights for the design and management of residential environments, emphasizing the importance of considering both pedestrian flow and environmental factors in optimizing living spaces for health and efficiency.
Collapse
|
3
|
Kewcharoenwong C, Khongmee A, Nithichanon A, Palaga T, Prueksasit T, Mudway IS, Hawrylowicz CM, Lertmemongkolchai G. Vitamin D3 regulates PM-driven primary human neutrophil inflammatory responses. Sci Rep 2023; 13:15850. [PMID: 37740033 PMCID: PMC10516903 DOI: 10.1038/s41598-023-43252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
Recent evidence has demonstrated that both acute and chronic exposure to particulate air pollution are risk factors for respiratory tract infections and increased mortality from sepsis. There is therefore an urgent need to establish the impact of ambient particulate matter (PM) on innate immune cells and to establish potential strategies to mitigate against adverse effects. PM has previously been reported to have potential adverse effects on neutrophil function. In the present study, we investigated the impact of standard urban PM (SRM1648a, NIST) and PM2.5 collected from Chiang Mai, Thailand, on human peripheral blood neutrophil functions, including LPS-induced migration, IL-8 production, and bacterial killing. Both NIST and the PM2.5, being collected in Chiang Mai, Thailand, increased IL-8 production, but reduced CXCR2 expression and migration of human primary neutrophils stimulated with Escherichia coli LPS. Moreover, PM-pretreated neutrophils from vitamin D-insufficient participants showed reduced E. coli-killing activity. Furthermore, in vitro vitamin D3 supplementation attenuated IL-8 production and improved bacterial killing by cells from vitamin D-insufficient participants. Our findings suggest that provision of vitamin D to individuals with insufficiency may attenuate adverse acute neutrophilic responses to ambient PM.
Collapse
Affiliation(s)
- Chidchamai Kewcharoenwong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Aranya Khongmee
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arnone Nithichanon
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tassanee Prueksasit
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ian S Mudway
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute of Health Research, Health Protection Research Unit in Environmental Exposures and Health, Imperial College London and King's College London, London, W12 OBZ, UK
| | - Catherine M Hawrylowicz
- King's Centre for Lung Health, School of Immunology and Microbial Sciences, King's College London, London, W2 1PG, UK
- National Institute of Health Research, Health Protection Research Unit in Environmental Exposures and Health, Imperial College London and King's College London, London, W12 OBZ, UK
| | - Ganjana Lertmemongkolchai
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
4
|
黄 凤, 顾 文, 蒋 吴, 孙 慧, 陈 正, 严 永, 郝 创, 朱 灿. [Association of Haemophilus influenzae infection with environmental and climatic factors in Suzhou, China]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:1351-1355. [PMID: 36544418 PMCID: PMC9785076 DOI: 10.7499/j.issn.1008-8830.2205051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To investigate the epidemiological characteristics of respiratory Haemophilus influenzae (HI) infection in children in Suzhou, China and its association with climatic factors and air pollutants. METHODS The data on air pollutants and climatic factors in Suzhou from January 2016 to December 2019 were collected. Respiratory secretions were collected from 7 940 children with acute respiratory infection who were hospitalized during this period, and bacterial culture results were analyzed for the detection of HI. A stepwise regression analysis was used to investigate the association of HI detection rate with air pollutants (PM2.5, PM10, NO2, SO2, CO, and O3) and climatic factors (monthly mean temperature, monthly mean humidity, monthly total rainfall, monthly total sunshine duration, and monthly mean wind speed). RESULTS In 2016-2019, the 4-year overall detection rate of HI was 9.26% (735/7 940) among the children in Suzhou. The children aged <1 year and 1-<3 years had a significantly higher HI detection rate than those aged ≥3 years (P<0.01). The detection rate of HI in spring was significantly higher than that in the other three seasons, and the detection rate of HI in autumn was significantly lower than that in the other three seasons (P<0.001). The multiple linear regression analysis showed that PM10 and monthly mean wind speed were independent risk factors for the detection rate of HI: the detection rate of HI was increased by 0.86% for every 10 µg/m3 increase in the concentration of PM10 and was increased by 5.64% for every 1 m/s increase in monthly mean wind speed. Air pollutants and climatic factors had a lag effect on the detection rate of HI. CONCLUSIONS HI is an important pathogen for acute respiratory infection in children in Suzhou and is prevalent in spring. PM10 and monthly mean wind speed are independent risk factors for the detection rate of HI.
Collapse
|
5
|
Liu Q, Qin C, Du M, Wang Y, Yan W, Liu M, Liu J. Incidence and Mortality Trends of Upper Respiratory Infections in China and Other Asian Countries from 1990 to 2019. Viruses 2022; 14:2550. [PMID: 36423159 PMCID: PMC9697955 DOI: 10.3390/v14112550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Respiratory infections remain a major public health problem, affecting people of all age groups, but there is still a lack of studies analyzing the burden of upper respiratory infections (URIs) in Asian countries. We used the data from the Global Burden of Diseases Study 2019 results to assess the current status and trends of URI burden from 1990 to 2019 in Asian countries. We found that Thailand had the highest age-standardized incidence rate (ASIR) of URI both in 1990 (354,857.14 per 100,000) and in 2019 (344,287.93 per 100,000); and the highest age-standardized mortality rate (ASMR) was in China in 1990 (2.377 per 100,000), and in Uzbekistan in 2019 (0.418 per 100,000). From 1990 to 2019, ASIRs of URI slightly increased in several countries, with the speediest in Pakistan (estimated annual percentage change [EAPC] = 0.404%, 95% CI, 0.322% to 0.486%); and Kuwait and Singapore had uptrends of ASMRs, at a speed of an average 3.332% (95% CI, 2.605% to 4.065%) and 3.160% (95% CI, 1.971% to 4.362%) per year, respectively. The age structure of URI was similar at national, Asian and Global levels. Children under the age of five had the highest incidence rate, and the elderly had the highest mortality rate of URI. Asian countries with a Socio-demographic Index between 0.5 and 0.7 had relatively lower ASIRs but higher ASMRs of URIs. The declined rate of URI ASMR in Asian countries was more pronounced in higher baseline (ASMR in 1990) countries. Our findings suggest that there was a huge burden of URI cases in Asia that affected vulnerable and impoverished people's livelihoods. Continuous and high-quality surveillance data across Asian countries are needed to improve the estimation of the disease burden attributable to URIs, and the best public health interventions are needed to curb this burden.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Chenyuan Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Min Du
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Yaping Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Wenxin Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Min Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Institute for Global Health and Development, Peking University, Beijing 100871, China
- Global Center for Infectious Disease and Policy Research, Global Health and Infectious Diseases Group, Peking University, Beijing 100191, China
| |
Collapse
|
6
|
Zhang S, Chen S, Xiao G, Zhao M, Li J, Dong W, Hu J, Yuan T, Li Y, Liu L. The associations between air pollutant exposure and neutralizing antibody titers of an inactivated SARS-CoV-2 vaccine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13720-13728. [PMID: 34599446 PMCID: PMC8486374 DOI: 10.1007/s11356-021-16786-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Air pollution is a critical risk factor for the prevalence of COVID-19. However, few studies have focused on whether air pollution affects the efficacy of the SARS-CoV-2 vaccine. To better guide the knowledge surrounding this vaccination, we conducted a cross-section study to identify the relationships between air pollutant exposure and plasma neutralizing antibody (NAb) titers of an inactivated SARS-CoV-2 vaccine (Vero cell, CoronaVac, SINOVΛC, China). We recruited 239 healthcare workers aged 21-50 years who worked at Suining Central Hospital. Of these, 207 were included in this study, depending on vaccination date. The data regarding air pollutants were collected to calculate individual daily exposure dose (DED). The geometric mean of all six pollutant DEDs was applied to estimate the combined toxic effects (DEDcomplex). Then, the participants were divided into two groups based on the mean value of DEDcomplex. The median plasma NAb titer was 12.81 AU/mL, with 85.99% vaccine efficacy in healthcare workers against SARS-CoV-2. In exposure group, observations included lower plasma NAb titers (median: 11.13 AU/mL vs. 14.56 AU/mL), more peripheral counts of white blood cells and monocytes (mean: 6.71 × 109/L vs. 6.29 × 109/L and 0.49 × 109/L vs. 0.40 × 109/L, respectively), and a higher peripheral monocyte ratio (7.38% vs. 6.50%) as compared to the reference group. In addition, elevated air pollutant DEDs were associated with decreased plasma NAb titers. To our knowledge, this study is the first to report the relationship between air pollutant exposure and plasma NAb titers of the SARS-CoV-2 vaccine. This suggests that long-term exposure to air pollutants may inhibit plasma NAb expression by inducing chronic inflammation. Therefore, to achieve early herd immunity and hopefully curb the COVID-19 epidemic, vaccinations should be administered promptly to those eligible, and environmental factors should be considered as well.
Collapse
Affiliation(s)
- Shaocheng Zhang
- Department of Clinical Laboratory Medicine, Suining Central Hospital, 127 Deshengxi Rd., Suining, 629000, Sichuan, People's Republic of China.
| | - Shu Chen
- Department of Clinical Laboratory Medicine, Suining Central Hospital, 127 Deshengxi Rd., Suining, 629000, Sichuan, People's Republic of China
| | - Guangjun Xiao
- Department of Clinical Laboratory Medicine, Suining Central Hospital, 127 Deshengxi Rd., Suining, 629000, Sichuan, People's Republic of China
| | - Mingcai Zhao
- Department of Clinical Laboratory Medicine, Suining Central Hospital, 127 Deshengxi Rd., Suining, 629000, Sichuan, People's Republic of China
| | - Jia Li
- Department of Clinical Laboratory Medicine, Suining Central Hospital, 127 Deshengxi Rd., Suining, 629000, Sichuan, People's Republic of China
| | - Wenjuan Dong
- Department of Public Health Administration and Health Education, Suining Central Hospital, Suining, 629000, Sichuan, People's Republic of China
| | - Juan Hu
- Department of Clinical Laboratory Medicine, Suining Central Hospital, 127 Deshengxi Rd., Suining, 629000, Sichuan, People's Republic of China
| | - Tianqi Yuan
- Maccura Biotechnology Co. Ltd., Chengdu, 611731, Sichuan, People's Republic of China
| | - Yong Li
- Maccura Biotechnology Co. Ltd., Chengdu, 611731, Sichuan, People's Republic of China
| | - Lianghua Liu
- Department of Clinical Laboratory Medicine, Suining Central Hospital, 127 Deshengxi Rd., Suining, 629000, Sichuan, People's Republic of China
| |
Collapse
|