1
|
Zheng T, Fei W, Hou D, Li P, Wu N, Wang M, Feng Y, Luo H, Luo N, Wei W. Characteristic study of biological CaCO 3-supported nanoscale zero-valent iron: stability and migration performance. ENVIRONMENTAL TECHNOLOGY 2025; 46:553-566. [PMID: 38853645 DOI: 10.1080/09593330.2024.2361487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
nZVI has attracted much attention in the remediation of contaminated soil and groundwater, but the application is limited due to its aggregation, poor stability, and weak migration performance. The biological CaCO3 was used as the carrier material to support nZVI and solved the nZVI agglomeration, which had the advantages of biological carbon fixation and green environmental protection. Meanwhile, the distribution of nZVI was characterised by SEM-EDS and TEM carefully. Subsequently, the dispersion stability of bare nZVI and CaCO3@nZVI composite was studied by the settlement experiment and Zeta potential. Sand column and elution experiments were conducted to study the migration performance of different materials in porous media, and the adhesion coefficient and maximum migration distances of different materials in sand columns were explored. SEM-EDS and TEM results showed that nZVI could be uniformly distributed on the surface of biological CaCO3. Compared with bare nZVI, CaCO3@nZVI composite suspension had better stability and higher absolute value of Zeta potential. The migration performance of nZVI was poor, while CaCO3@nZVI composite could penetrate the sand column and have good migration performance. What's more, the elution rates of bare nZVI and CaCO3@nZVI composite in quartz sand columns were 5.8% and 51.6%, and the maximum migration distances were 0.193 and 0.885 m, respectively. In summary, this paper studies the stability and migration performance of bare nZVI and CaCO3@nZVI composite, providing the experimental and theoretical support for the application of CaCO3@nZVI composite, which is conducive to promoting the development of green remediation functional materials.
Collapse
Affiliation(s)
- Tianwen Zheng
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Wenbo Fei
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Daibing Hou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Peizhong Li
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Naijin Wu
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Moxi Wang
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Yangfan Feng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Huilong Luo
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Nan Luo
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Wenxia Wei
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| |
Collapse
|
2
|
Sepehri S, Javadi Moghaddam J, Abdoli S, Asgari Lajayer B, Shu W, Price GW. Application of artificial intelligence in modeling of nitrate removal process using zero-valent iron nanoparticles-loaded carboxymethyl cellulose. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:262. [PMID: 38926193 DOI: 10.1007/s10653-024-02089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
This study explores nitrate reduction in aqueous solutions using carboxymethyl cellulose loaded with zero-valent iron nanoparticles (Fe0-CMC). The structures of this nano-composite were characterized using various techniques. Based on the characterization results, the specific surface area of Fe0-CMC measured by the Brunauer-Emmett-Teller analysis were 39.6 m2/g. In addition, Scanning Electron Microscopy images displayed that spherical nano zero-valent iron particles (nZVI) with an average particle diameter of 80 nm are surrounded by carboxymethyl cellulose and no noticeable aggregates were detected. Batch experiments assessed Fe0-CMC's effectiveness in nitrate removal under diverse conditions including different adsorbent dosages (Cs, 2-10 mg/L), contact time (t, 10-1440 min), initial pH (pHi, 2-10), temperature (T, 10-55 °C), and initial concentration of nitrate (C0, 10-500 mg/L). Results indicated decreased removal with higher initial pHi and C0, while increased Cs and T enhanced removal. The study of nitrate removal mechanism by Fe0-CMC revealed that the redox reaction between immobilized nZVI on the CMC surface and nitrate ions was responsible for nitrate removal, and the main product of this reaction was ammonium, which was subsequently completely removed by the synthesized nanocomposite. In addition, a stable deviation quantum particle swarm optimization algorithm (SD-QPSO) and a least square error method were employed to train the ANFIS parameters. To demonstrate model performance, a quadratic polynomial function was proposed to display the performance of the SD-QPSO algorithm in which the constant parameters were optimized through the SD-QPSO algorithm. Sensitivity analysis was conducted on the proposed quadratic polynomial function by adding a constant deviation and removing each input using two different strategies. According to the sensitivity analysis, the predicted removal efficiency was most sensitive to changes in pHi, followed by Cs, T, C0, and t. The obtained results underscore the potential of the ANFIS model (R2 = 0.99803, RMSE = 0.9888), and polynomial function (R2 = 0.998256, RMSE = 1.7532) as accurate and efficient alternatives to time-consuming laboratory measurements for assessing nitrate removal efficiency. These models can offer rapid insights and predictions regarding the impact of various factors on the process, saving both time and resources.
Collapse
Affiliation(s)
- Saloome Sepehri
- Agricultural Engineering Research Institute (AERI), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31585-845, Karaj, Iran.
| | - Jalal Javadi Moghaddam
- Agricultural Engineering Research Institute (AERI), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31585-845, Karaj, Iran
| | - Sima Abdoli
- Department of Soil Science and Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Behnam Asgari Lajayer
- Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS, B2N 5E3, Canada.
| | - Weixi Shu
- Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS, B2N 5E3, Canada
| | - G W Price
- Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS, B2N 5E3, Canada.
| |
Collapse
|
3
|
Angkaew A, Chokejaroenrat C, Angkaew M, Satapanajaru T, Sakulthaew C. Persulfate activation using leonardite char-supported nano zero-valent iron composites for styrene-contaminated soil and water remediation. ENVIRONMENTAL RESEARCH 2024; 240:117486. [PMID: 37914017 DOI: 10.1016/j.envres.2023.117486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Effective in-situ technology to treat carcinogenic compounds in contaminated areas poses a major challenge. Our objective was to load nano-zero-valent iron (nZVI) onto leonardite char (LNDC), an alternative carbon source from industrial waste, for use as a persulfate (PS) activator for styrene treatment in soil and water. By adding a surfactant during synthesis, cetyltrimethylammonium bromide (CTAB) promotes a flower-like morphology and the nZVI formation in smaller sizes. Results showed that nZVI plays a crucial role in PS activation in both homogeneous and heterogeneous reactions to generate reactive oxygen species (ROS), which can remove 98% of styrene within 20 min. Quenching experiments indicated that singlet oxygen (1O2), superoxide radicals (O2•-), and sulfate radicals (SO4•-) were the main species working together to degrade styrene. XPS analysis also revealed a role of surface oxygen-containing groups (i.e., CO, C-OH) in activating PS for SO4•- and 1O2 generation. The possible reaction mechanism of PS activation by LNDC-CTAB-nZVI composite and factors affecting treatment efficiency (i.e., PS concentration, catalyst dosage, pH, and humic acid) were illustrated. The molarity/molality ratio of PS to nZVI should be set greater than 1 for effective styrene removal. GC-MS analysis showed that styrene was degraded to a less toxic benzaldehyde intermediate. However, the excessive use of PS and catalysts can harm plant growth, requiring a combining approach to achieve safer use for real applications. Overall results supported the use of the LNDC-CTAB-nZVI/PS system as an efficient in-situ treatment technology for soil and water remediation.
Collapse
Affiliation(s)
- Athaphon Angkaew
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900, Thailand.
| | - Chanat Chokejaroenrat
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900, Thailand.
| | - Matura Angkaew
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900, Thailand; Center of Research and Academic Services, Faculty of Environment, Kasetsart University, Bangkok, 10900, Thailand.
| | - Tunlawit Satapanajaru
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok, 10900, Thailand.
| | - Chainarong Sakulthaew
- Department of Veterinary Nursing, Faculty of Veterinary Technology, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
4
|
D'ors A, Sánchez-Fortún A, Cortés-Téllez AA, Fajardo C, Mengs G, Nande M, Martín C, Costa G, Martín M, Bartolomé MC, Sánchez-Fortún S. Adverse effects of iron-based nanoparticles on freshwater phytoplankton Scenedesmus armatus and Microcystis aeruginosa strains. CHEMOSPHERE 2023; 339:139710. [PMID: 37532199 DOI: 10.1016/j.chemosphere.2023.139710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Zero-valent nano-iron particles (nZVI) are increasingly present in freshwater aquatic environments due to their numerous applications in environmental remediation. However, despite the broad benefits associated with the use and development of nZVI nanoparticles, the potential risks of introducing them into the aquatic environment need to be considered. Special attention should be focused on primary producer organisms, the basal trophic level, whose impact affects the rest of the food web. Although there are numerous acute studies on the acute effects of these nanoparticles on photosynthetic primary producers, few studies focus on long-term exposures. The present study aimed at assessing the effects of nZVI on growth rate, photosynthesis activity, and reactive oxygen activity (ROS) on the freshwater green algae Scenedesmus armatus and the cyanobacteria Microcystis aeruginosa. Moreover, microcystin production was also evaluated. These parameters were assessed on both organisms singly exposed to 72 h-effective nZVI concentration for 10% maximal response for 28 days. The results showed that the cell growth rate of S. armatus was initially significantly altered and progressively reached control-like values at 28 days post-exposure, while M. aeruginosa did not show any significant difference concerning control values at any time. In both strains dark respiration (R) increased, unlike net photosynthesis (Pn), while gross photosynthesis (Pg) only slightly increased at 7 days of exposure and then became equal to control values at 28 days of exposure. The nZVI nanoparticles generated ROS progressively during the 28 days of exposure in both strains, although their formation was significantly higher on green algae than on cyanobacteria. These data can provide additional information to further investigate the potential risks of nZVI and ultimately help decision-makers make better informed decisions regarding the use of nZVI for environmental remediation.
Collapse
Affiliation(s)
- A D'ors
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave, 28040, Madrid, Spain
| | - A Sánchez-Fortún
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave, 28040, Madrid, Spain
| | - A A Cortés-Téllez
- Environmental Toxicology Laboratory, Faculty of Chemistry-Pharmacobiology, Universidad Michoacana de San Nicolás de Hidalgo, 403 Santiago Tapia St, 58000, Morelia, (Michoacán), Mexico
| | - C Fajardo
- Dpt. of Biomedicine and Biotechnology, Universidad de Alcalá (UAH), w/n San Diego Sq, 28801, Alcalá de Henares, Spain
| | - G Mengs
- Technical and R&D Department, Ecotoxilab SL, 10 Juan XXIII, 28550, Tielmes, Spain
| | - M Nande
- Dpt. of Biochemistry and Molecular Biology, Complutense University, w/n Puerta de Hierro Ave, 28040, Madrid, Spain
| | - C Martín
- Dpt. of Biotechnology-Plant Biology, Universidad Politécnica de Madrid (UPM), 3 Complutense Ave, 28040, Madrid, Spain
| | - G Costa
- Department of Animal Physiology, Faculty of Veterinary Sciences, Complutense University, w/n Puerta de Hierro Ave, 28040, Madrid, Spain
| | - M Martín
- Dpt. of Biochemistry and Molecular Biology, Complutense University, w/n Puerta de Hierro Ave, 28040, Madrid, Spain
| | - M C Bartolomé
- Environmental Toxicology Laboratory, Faculty of Chemistry-Pharmacobiology, Universidad Michoacana de San Nicolás de Hidalgo, 403 Santiago Tapia St, 58000, Morelia, (Michoacán), Mexico.
| | - S Sánchez-Fortún
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave, 28040, Madrid, Spain.
| |
Collapse
|
5
|
Zhang Q, Li J, Chen D, Xiao W, Zhao S, Ye X, Li H. In situ formation of Ca(OH) 2 coating shell to extend the longevity of zero-valent iron biochar composite derived from Fe-rich sludge for aqueous phosphorus removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158794. [PMID: 36116640 DOI: 10.1016/j.scitotenv.2022.158794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Despite being an effective and attractive functional strategy for aqueous phosphorus (P) removal, the use of zero valent iron (ZVI) biochar composites has been severely impeded by rapid self-erosion. We describe a new approach for extending the lifespan of Fe-rich sludge-derived ZVI biochar composites via CaCl2 modification. Preliminary results showed that composites obtained at 900 °C without modification (MBC900) and at 900 °C with 100 g Cl/kg addition (MBC900100) had the highest P removal efficiency. In subsequent batch experiments, MBC900100 exhibited more stable P adsorption capacities than MBC900 over a wide pH range (4-10) and at various dosages, which was enhanced by the presence of HCO3-. The theoretical maximum P adsorption capacities of MBC900 and MBC900100 were 227.14 and 224.15 mg g-1, respectively. Kinetic analysis indicated that chemisorption dominated the removal process. Continuous experimental data using the Yoon-Nelson model indicated that MBC900100 had a considerably longer half-penetration time. The primary mechanism of P removal by MBC900 was Fe/C micro-electrolysis. As the embedded CaO formed a dissolvable Ca(OH)2 shell in situ on the surface of MBC900100, the phosphate formed a precipitate with free Ca2+ before being removed via micro-electrolysis. Overall, CaCl2 modification successfully enhanced the longevity of the ZVI biochar composites.
Collapse
Affiliation(s)
- Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 298 Desheng Middle Road, Hangzhou 310021, PR China
| | - Jun Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - De Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 298 Desheng Middle Road, Hangzhou 310021, PR China
| | - Wendan Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 298 Desheng Middle Road, Hangzhou 310021, PR China
| | - Shouping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 298 Desheng Middle Road, Hangzhou 310021, PR China
| | - Xuezhu Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 298 Desheng Middle Road, Hangzhou 310021, PR China
| | - Hui Li
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha 410004, PR China
| |
Collapse
|
6
|
Zhang L, Feng M, Zhao D, Li M, Qiu S, Yuan M, Guo C, Han W, Zhang K, Wang F. La-Ca-quaternary amine-modified straw adsorbent for simultaneous removal of nitrate and phosphate from nutrient-polluted water. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Zheng Y, Zhang X, Wu M, Liu Y, Zhan J. Enhanced selective nitrate-to-nitrogen reduction by aerosol-assisted iron-carbon composites: Insights into the key factors. CHEMOSPHERE 2022; 303:134819. [PMID: 35595108 DOI: 10.1016/j.chemosphere.2022.134819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
In this study, an aerosol-assisted Fe0/C (carbon supported zero-valent iron) composite was prepared and evaluated, which could effectively remove nitrate and exhibit high nitrogen selectivity. The results show that the selectivity of nitrogen for freshly prepared Fe0/C composites could reach 52.2% when pH at 7, compared to that of 7.7% for traditional nZVI. Meanwhile, the removal efficiency of nitrate was slightly increased from 63.5% to 69.9%. Furthermore, a variety of methods such as SEM, TEM, XRD, XPS, BET, FTIR and TGA were used to characterize the Fe0/C composites before and after reaction. Hence, the following key factors were determined for the effective conversion from nitrate to nitrogen: the surface of zero valent iron particle should be protected from oxidation and its genuine characteristics are well retained; the reaction should be controlled under an anaerobic condition; and the carbon as the carrier to support iron particles is very important; lower initial pH favors nitrogen generation. Various materials including aged Fe0/C composites, Fe0/SiO2 (SiO2 supported zero-valent iron) composites and nZVI particles in the deoxygenated and oxygenated systems were assessed for comparison.
Collapse
Affiliation(s)
- Yueshi Zheng
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, PR China
| | - Xiujuan Zhang
- School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin, 124221, PR China
| | - Minghuo Wu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, PR China
| | - Yang Liu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, PR China
| | - Jingjing Zhan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, PR China.
| |
Collapse
|
8
|
Liu X, Wei J, Wu Y, Zhang J, Xing L, Zhang Y, Pan G, Li J, Xu M, Li J. Performances and mechanisms of microbial nitrate removal coupling sediment-based biochar and nanoscale zero-valent iron. BIORESOURCE TECHNOLOGY 2022; 345:126523. [PMID: 34896530 DOI: 10.1016/j.biortech.2021.126523] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Immobilized microorganism technology has attracted increasing attention for high concentration of microbes, low cell loss and high resistance to impact of environment. The microbial reduction of nitrate in the presence of sediment-based biochar (SBC) and nanoscale zero-valent iron (nZVI) was investigated in four different free systems. NZVI-SBC/bacteria system realized the best nitrate removal of 97.61% within 3 days through the synergistic effect of SBC and nZVI on denitrifying bacteria. Accumulation of nitrite and ammonium in nZVI-SBC/bacteria system also decreased. High-throughput sequencing results showed that the proportion of denitrifying bacteria in microbial community structure increased after adding nZVI-SBC. The performance of nitrate removal was then studied through PVA/SA-immobilization. Immobilized active pellets performed better nitrate removal (98.89%) and stronger tolerance under different conditions than the free bacterial cells. Overall, this study provided a promising approach by utilizing SBC and nZVI for the bio-remediation of nitrate-contaminated water in practical application.
Collapse
Affiliation(s)
- Xiaohui Liu
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Jia Wei
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| | - Yaodong Wu
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Jing Zhang
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Luyi Xing
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Yifei Zhang
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Guoping Pan
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Jiamei Li
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Mengdie Xu
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Jun Li
- College of Architecture Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
9
|
Wang X, Yu D, Chen G, Liu C, Xu A, Tang Z. Effects of interactions between quorum sensing and quorum quenching on microbial aggregation characteristics in wastewater treatment: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2883-2902. [PMID: 34719836 DOI: 10.1002/wer.1657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Due to the increasingly urgent demand for effective wastewater denitrification and dephosphorization systems, there is a need to improve the performance of existing biological treatment technologies. As a bacteria-level communication mechanism, quorum sensing (QS) synchronizes gene expression in a density-dependent manner and regulates bacterial physiological behavior. On this basis, the QS-based bacterial communication mechanism and environmental factors affecting QS are discussed. This paper reviews the influence of QS on sludge granulation, biofilm formation, emerging contaminants (ECs) removal, and horizontal gene transfer in sewage treatment system. Furthermore, the QS inhibition strategies are compared. Based on the coexistence and balance of QQ and QS in the long-term operation system, QQ, as an effective tool to regulate the growth density of microorganisms, provides a promising exogenous regulation strategy for residual sludge reduction and biofilm pollution control. This paper reviews the potential of improving wastewater treatment efficiency based on QS theory and points out the feasibility and prospect of exogenous regulation strategy. PRACTITIONER POINTS: The mechanism of bacterial communication based on QS and the environmental factors affecting QS were discussed. The application of QS and QQ in improving the sludge performance of biological treatment systems was described. The significance of QS and QQ coexistence in sewage treatment process was described.
Collapse
Affiliation(s)
- Xueping Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Guanghui Chen
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, China
| | - Chengju Liu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Ao Xu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Zhihao Tang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| |
Collapse
|