2
|
Bao Z, Yang M, Guo Y, Ge Q, Zhang H. MTFR2 accelerates hepatocellular carcinoma mediated by metabolic reprogramming via the Akt signaling pathway. Cell Signal 2024; 123:111366. [PMID: 39182591 DOI: 10.1016/j.cellsig.2024.111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Metabolic reprogramming has recently been identified as a hallmark of malignancies. The shift from oxidative phosphorylation to glycolysis in hepatocellular carcinoma (HCC) meets the demands of rapid cell growth and provides a microenvironment for tumor progression. This study sought to uncover the function and mechanism of MTFR2 in the metabolic reprogramming of HCC. Elevated MTFR2 expression was associated with poor patient prognosis. Downregulation of MTFR2 blocked malignant behaviors, epithelial-to-mesenchymal transition (EMT), and glycolysis in HCC cells. Nuclear transcription factor Y subunit gamma (NFYC) was also associated with poor patient prognosis, and NFYC bound to the promoter of MTFR2 to activate transcription and promote Akt signaling. The repressive effects of NFYC knockdown on EMT and glycolysis in HCC cells were compromised by MTFR2 overexpression, elicited through the activation of the Akt signaling. Knockdown of NFYC slowed the growth and intrahepatic metastasis in vivo, which was reversed by MTFR2 overexpression. In conclusion, our work shows that activation of MTFR2 by the transcription factor NFYC promotes Akt signaling, thereby potentiating metabolic reprogramming in HCC development. Targeting the NFYC/MTFR2/Akt axis may represent a therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Zhongming Bao
- Department of Hepatobiliary Surgery, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huaiyin 223300, Jiangsu, PR China
| | - Ming Yang
- Department of Hepatobiliary Surgery, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huaiyin 223300, Jiangsu, PR China
| | - Yunhu Guo
- Department of Hepatobiliary Surgery, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huaiyin 223300, Jiangsu, PR China
| | - Qi Ge
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, Anhui, PR China.
| | - Huaguo Zhang
- Department of Hepatobiliary Surgery, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huaiyin 223300, Jiangsu, PR China.
| |
Collapse
|
3
|
Zhou X, Hang S, Wang Q, Xu L, Wang P. Decoding the Role of O-GlcNAcylation in Hepatocellular Carcinoma. Biomolecules 2024; 14:908. [PMID: 39199296 PMCID: PMC11353135 DOI: 10.3390/biom14080908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Post-translational modifications (PTMs) influence protein functionality by modulating protein stability, localization, and interactions with other molecules, thereby controlling various cellular processes. Common PTMs include phosphorylation, acetylation, ubiquitination, glycosylation, SUMOylation, methylation, sulfation, and nitrosylation. Among these modifications, O-GlcNAcylation has been shown to play a critical role in cancer development and progression, especially in hepatocellular carcinoma (HCC). This review outlines the role of O-GlcNAcylation in the development and progression of HCC. Moreover, we delve into the underlying mechanisms of O-GlcNAcylation in HCC and highlight compounds that target O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) to improve treatment outcomes. Understanding the role of O-GlcNAcylation in HCC will offer insights into potential therapeutic strategies targeting OGT and OGA, which could improve treatment for patients with HCC.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Surgery, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.Z.); (S.H.)
| | - Sirui Hang
- Department of Surgery, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.Z.); (S.H.)
| | - Qingqing Wang
- Department of Hepatobiliary Surgery, The First Hospital of Jiaxing, Jiaxing 314051, China;
| | - Liu Xu
- Department of Hepatobiliary Surgery, The First Hospital of Jiaxing, Jiaxing 314051, China;
| | - Peter Wang
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou 310000, China
| |
Collapse
|
4
|
Szilveszter RM, Muntean M, Florea A. Molecular Mechanisms in Tumorigenesis of Hepatocellular Carcinoma and in Target Treatments-An Overview. Biomolecules 2024; 14:656. [PMID: 38927059 PMCID: PMC11201617 DOI: 10.3390/biom14060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatocellular carcinoma is the most common primary malignancy of the liver, with hepatocellular differentiation. It is ranked sixth among the most common cancers worldwide and is the third leading cause of cancer-related deaths. The most important etiological factors discussed here are viral infection (HBV, HCV), exposure to aflatoxin B1, metabolic syndrome, and obesity (as an independent factor). Directly or indirectly, they induce chromosomal aberrations, mutations, and epigenetic changes in specific genes involved in intracellular signaling pathways, responsible for synthesis of growth factors, cell proliferation, differentiation, survival, the metastasis process (including the epithelial-mesenchymal transition and the expression of adhesion molecules), and angiogenesis. All these disrupted molecular mechanisms contribute to hepatocarcinogenesis. Furthermore, equally important is the interaction between tumor cells and the components of the tumor microenvironment: inflammatory cells and macrophages-predominantly with a pro-tumoral role-hepatic stellate cells, tumor-associated fibroblasts, cancer stem cells, extracellular vesicles, and the extracellular matrix. In this paper, we reviewed the molecular biology of hepatocellular carcinoma and the intricate mechanisms involved in hepatocarcinogenesis, and we highlighted how certain signaling pathways can be pharmacologically influenced at various levels with specific molecules. Additionally, we mentioned several examples of recent clinical trials and briefly described the current treatment protocol according to the NCCN guidelines.
Collapse
Affiliation(s)
- Raluca-Margit Szilveszter
- Department of Pathology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400340 Cluj-Napoca, Romania
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.M.); (A.F.)
- Cluj County Emergency Clinical Hospital, 400340 Cluj-Napoca, Romania
| | - Mara Muntean
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.M.); (A.F.)
| | - Adrian Florea
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.M.); (A.F.)
| |
Collapse
|
5
|
Lu Y, Liu Y, Lan J, Chan YT, Feng Z, Huang L, Wang N, Pan W, Feng Y. Thioredoxin-interacting protein-activated intracellular potassium deprivation mediates the anti-tumour effect of a novel histone acetylation inhibitor HL23, a fangchinoline derivative, in human hepatocellular carcinoma. J Adv Res 2023; 51:181-196. [PMID: 36351536 PMCID: PMC10491973 DOI: 10.1016/j.jare.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Hyperactivated histone deacetylases (HDACs) act as epigenetic repressors on gene transcription and are frequently observed in human hepatocellular carcinoma (HCC). Although multiple pharmacological HDAC inhibitors (HDACis) have been developed, none is available in human HCC. OBJECTIVES To investigate the pharmacological effects of a fangchinoline derivative HL23, as a novel HDACi and its molecular mechanisms through TXNIP-mediated potassium deprivation in HCC. METHODS Both in vitro assays and orthotopic HCC mouse models were used to investigate the effects of HL23 in this study. The inhibitory activity of HL23 on HDACs was evaluated by in silico studies and cellular assays. Chromatin immunoprecipitation (ChIP) was conducted to confirm the regulation of HL23 on acetylation mark at TXNIP promoter. Genome-wide transcriptome analysis together with bioinformatic analysis were conducted to identify the regulatory mechanisms of HL23. The clinical significance of TXNIP and HDACs was evaluated by analysing publicly available database. RESULTS HL23 exerted compatible HDACs inhibition potency as Vorinostat (SAHA) while had superior anti-HCC effects than SAHA and sorafenib. Both in vitro and in vivo studies showed HL23 significantly suppressed HCC progression and metastasis. HL23 significantly upregulated TXNIP expression via regulating acetylation mark (H3K9ac) at TXNIP promoter. TXNIP was responsible for anti-HCC activity of HL23 through mediating potassium channel activity. HDAC1 was predicted to be the target of HL23 and HDAC1lowTXNIPhigh could jointly predict promising survival outcome of patients with HCC. Combination treatment with HL23 and sorafenib could significantly enhance sorafenib efficacy. CONCLUSION Our study identified HL23 as a novel HDACi through enhancing acetylation at TXNIP promoter to trigger TXNIP-dependent potassium deprivation and enhance sorafenib efficacy in HCC treatment.
Collapse
Affiliation(s)
- Yuanjun Lu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yazhou Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, China; Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Junjie Lan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, China
| | - Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zixin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lan Huang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, China.
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
6
|
Samuel RM, Navickas A, Maynard A, Gaylord EA, Garcia K, Bhat S, Majd H, Richter MN, Elder N, Le D, Nguyen P, Shibata B, Llabata ML, Selleri L, Laird DJ, Darmanis S, Goodarzi H, Fattahi F. Generation of Schwann cell derived melanocytes from hPSCs identifies pro-metastatic factors in melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531220. [PMID: 36945537 PMCID: PMC10028814 DOI: 10.1101/2023.03.06.531220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The neural crest (NC) is highly multipotent and generates diverse lineages in the developing embryo. However, spatiotemporally distinct NC populations display differences in fate potential, such as increased gliogenic and parasympathetic potential from later migrating, nerve-associated Schwann cell precursors (SCPs). Interestingly, while melanogenic potential is shared by both early migrating NC and SCPs, differences in melanocyte identity resulting from differentiation through these temporally distinct progenitors have not been determined. Here, we leverage a human pluripotent stem cell (hPSC) model of NC temporal patterning to comprehensively characterize human NC heterogeneity, fate bias, and lineage development. We captured the transition of NC differentiation between temporally and transcriptionally distinct melanogenic progenitors and identified modules of candidate transcription factor and signaling activity associated with this transition. For the first time, we established a protocol for the directed differentiation of melanocytes from hPSCs through a SCP intermediate, termed trajectory 2 (T2) melanocytes. Leveraging an existing protocol for differentiating early NC-derived melanocytes, termed trajectory 1 (T1), we performed the first comprehensive comparison of transcriptional and functional differences between these distinct melanocyte populations, revealing differences in pigmentation and unique expression of transcription factors, ligands, receptors and surface markers. We found a significant link between the T2 melanocyte transcriptional signature and decreased survival in melanoma patients in the cancer genome atlas (TCGA). We performed an in vivo CRISPRi screen of T1 and T2 melanocyte signature genes in a human melanoma cell line and discovered several T2-specific markers that promote lung metastasis in mice. We further demonstrated that one of these factors, SNRPB, regulates the splicing of transcripts involved in metastasis relevant functions such as migration, cell adhesion and proliferation. Overall, this study identifies distinct developmental trajectories as a source of diversity in melanocytes and implicates the unique molecular signature of SCP-derived melanocytes in metastatic melanoma.
Collapse
Affiliation(s)
- Ryan M. Samuel
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Albertas Navickas
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Current address: Institut Curie, CNRS UMR3348, INSERM U1278, Orsay, France
| | - Ashley Maynard
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Current address: Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Eliza A. Gaylord
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Kristle Garcia
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Samyukta Bhat
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Homa Majd
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Mikayla N. Richter
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Nicholas Elder
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Daniel Le
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Current address: Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech Inc, South San Francisco, CA
| | - Phi Nguyen
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Bradley Shibata
- Biological Electron Microscopy Facility, University of California, Davis, CA 95616, USA
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA
| | - Marta Losa Llabata
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94110, USA
- Current address: Caribou Biosciences, Berkley, CA 94710
| | - Licia Selleri
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94110, USA
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Diana J. Laird
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Spyros Darmanis
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Current address: Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech Inc, South San Francisco, CA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Faranak Fattahi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
8
|
Zhu Z, Song M, Li W, Li M, Chen S, Chen B. Identification, Verification and Pathway Enrichment Analysis of Prognosis-Related Immune Genes in Patients With Hepatocellular Carcinoma. Front Oncol 2021; 11:695001. [PMID: 34616672 PMCID: PMC8488301 DOI: 10.3389/fonc.2021.695001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022] Open
Abstract
Hepatocellular carcinoma is a common malignant tumor with poor prognosis, poor treatment effect, and lack of effective biomarkers. In this study, bioinformatics analysis of immune-related genes of hepatocellular carcinoma was used to construct a multi-gene combined marker that can predict the prognosis of patients. The RNA expression data of hepatocellular carcinoma were downloaded from The Cancer Genome Atlas (TCGA) database, and immune-related genes were obtained from the IMMPORT database. Differential analysis was performed by Wilcox test to obtain differentially expressed genes. Univariate Cox regression analysis, lasso regression analysis and multivariate Cox regression analysis were performed to establish a prognostic model of immune genes, a total of 5 genes (HDAC1, BIRC5, SPP1, STC2, NR6A1) were identified to construct the models. The expression levels of 5 genes in HCC tissues were significantly different from those in paracancerous tissues. The Kaplan-Meier survival curve showed that the risk score calculated according to the prognostic model was significantly related to the overall survival (OS) of HCC. The receiver operating characteristic (ROC) curve confirmed that the prognostic model had high accuracy. Independent prognostic analysis was performed to prove that the risk value can be used as an independent prognostic factor. Then, the gene expression data of hepatocellular carcinoma in the ICGC database was used as a validation data set for the verification of the above steps. In addition, we used the CIBERSORT software and TIMER database to conduct immune infiltration research, and the results showed that the five genes of the model and the risk score have a certain correlation with the content of immune cells. Moreover, through Gene Set Enrichment Analysis (GSEA) and the construction of protein interaction networks, we found that the p53-mediated signal transduction pathway is a potentially important signal pathway for hepatocellular carcinoma and is positively regulated by certain genes in the prognostic model. In conclusion, this study provides potential targets for predicting the prognosis and treatment of hepatocellular carcinoma patients, and also provides new ideas about the correlation between immune genes and potential pathways of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhipeng Zhu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Clinical Medicine, The First Clinical College, Anhui Medical University, Hefei, China
| | - Mengyu Song
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Clinical Medicine, The First Clinical College, Anhui Medical University, Hefei, China
| | - Wenhao Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Clinical Medicine, The First Clinical College, Anhui Medical University, Hefei, China
| | - Mengying Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Clinical Medicine, The First Clinical College, Anhui Medical University, Hefei, China
| | - Sihan Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bo Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|