1
|
Chi B, Li F, Wang X, Pan H, Yi X, Liu Y, Zhan J, Zhang X, Zhou H, Wang W. DMF mineralization and substrate specificity mechanism of Aminobacter ciceronei DMFA1. ENVIRONMENTAL RESEARCH 2024; 245:117980. [PMID: 38142731 DOI: 10.1016/j.envres.2023.117980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/04/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
N,N-dimethylformamide (DMF) is widely used in various industries, but its direct release into water poses high risks to human beings. Although a lot of DMF-degrading bacteria has been isolated, limited studies focus on the degradation preference among DMF and its analogues. In this study, an efficient DMF mineralization bacterium designated Aminobacter ciceronei DMFA1 was isolated from marine sediment. When exposed to a 0.2% DMF (∼1900 mg/L), strain DMFA1 exhibited a degradation efficiency of 100% within 4 days. The observed growth using formamide as the sole carbon source implied the possible DMF degradation pathway of strain DMFA1. Meanwhile,the strain DMFA1 possesses a broad-spectrum substrate degradation, which could effectively degraded 0.2% N,N-dimethylacetamide (DMAC) and N-methylformamide (NMF). Genomic analysis further confirmed the supposed pathway through annotating the genes encoding N, N-dimethylformamidase (DMFase), formamidase, and formate dehydrogenase. The existence of sole DMFase indicating its substrate specificity controlled the preference of DMAc of strain DMFA1. By integrating multiple sequence alignment, homology modeling and molecular docking, the preference of the DMFase in strain DMFA1 towards DMAc are related to: 1) Mutations in key active site residues; 2) the absence of small subunit; and 3) no energy barrier for substrates entering the active site.
Collapse
Affiliation(s)
- Baihui Chi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Fei Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Xukang Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Haixia Pan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Xianliang Yi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Yang Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Xuwang Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China.
| | - Wenyuan Wang
- State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|