1
|
Misiukiewicz-Stępień P, Zajusz-Zubek E, Górska K, Krenke R, Paplińska-Goryca M. The different response of PM 2.5 stimulated nasal epithelial spheroids in control, asthma and COPD groups. Respir Res 2025; 26:8. [PMID: 39780154 PMCID: PMC11714913 DOI: 10.1186/s12931-025-03097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Pathobiology of asthma and chronic obstructive pulmonary disease (COPD) is associated with changes among respiratory epithelium structure and function. Increased levels of PM2.5 from urban particulate matter (UPM) are correlated with enlarged rate of asthma and COPD morbidity as well as acute disease exacerbation. It has been suggested that pre-existing pulmonary obstructive diseases predispose epithelium for different biological response than in healthy airways. The aim of this study was to assess the impact of PM2.5 on the biological response of healthy as well as asthma and COPD respiratory epithelium using 3D/spheroid culture model. METHODS The spheroids from 5 healthy controls, 8 asthma patients, and 8 COPD patients were exposed to 100 µg/ml of PM2.5 for 24 h. RESULTS The common pattern for healthy asthma and COPD epithelium inflammatory response to PM2.5 stimulation include the increase in IL-1β, IL-6, IL-8 mRNA expression, and secretion of IL-6. Asthmatic spheroids produced higher amount of TNF-α and IL-8, whereas COPD spheroids expressed increased mRNA level of MUC5AC and decreased level of MMP7. PM2.5 treatment induced changes in AHR and TLR4 expression on secretory epithelium in COPD. CONCLUSION The response of airway epithelium to air pollution is different in healthy people than in obstructive lung disease patients. The impairment of airway epithelium in asthma and COPD changes their response to toxic environmental stimuli. This physiological dysfunction might be associated with diseases exacerbation of obstructive lung diseases.
Collapse
Affiliation(s)
- Paulina Misiukiewicz-Stępień
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, Warsaw, 02-097, Poland
| | - Elwira Zajusz-Zubek
- Faculty of Energy and Environmental Engineering, Department of Air Protection, Silesian University of Technology, Gliwice, Poland
| | - Katarzyna Górska
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, Warsaw, 02-097, Poland
| | - Rafał Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, Warsaw, 02-097, Poland
| | - Magdalena Paplińska-Goryca
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, Warsaw, 02-097, Poland.
| |
Collapse
|
2
|
Zhang Y, Frimpong AJ, Tang J, Olayode IO, Kyei SK, Owusu-Ansah P, Agyeman PK, Fayzullayevich JV, Tan G. An explicit review and proposal of an integrated framework system to mitigate the baffling complexities induced by road dust-associated contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123957. [PMID: 38631446 DOI: 10.1016/j.envpol.2024.123957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/03/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Road dust-associated contaminants (RD-AC) are gradually becoming a much thornier problem, as their monotonous correlations render them carcinogenic, mutagenic, and teratogenic. While many studies have examined the harmful effects of road dust on both humans and the environment, few studies have considered the co-exposure risk and gradient outcomes given the spatial extent of RD-AC. In this spirit, this paper presents in-depth elucidation into the baffling complexities induced by both major and emerging contaminants of road dust through a panorama-to-profile up-to-date review of diverse studies unified by the goal of advancing innovative methods to mitigate these contaminants. The paper thoroughly explores the correlations between RD-AC and provides insights to understand their potential in dispersing saprotrophic microorganisms. It also explores emerging challenges and proposes a novel integrated framework system aimed at thermally inactivating viruses and other pathogenic micro-organisms commingled with RD-AC. The main findings are: (i) the co-exposure risk of both major and emerging contaminants add another layer of complexity, highlighting the need for more holistic framework strategies, given the geospatial morphology of these contaminants; (ii) road dust contaminants show great potential for extended prevalence and severity of viral particles pollution; (iii) increasing trend of environmentally persistent free radicals (EPFRs) in road dust, with studies conducted solely in China thus far; and (iv) substantial hurdle exists in acquiring data concerning acute procedural distress and long-term co-exposure risk to RD-ACs. Given the baffling complexities of RD-ACs, co-exposure risk and the need for innovative mitigation strategies, the study underscore the significance of establishing robust systems for deep road dust contaminants control and future research efforts while recognizing the interconnectivity within the contaminants associated with road dust.
Collapse
Affiliation(s)
- Yuxiao Zhang
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China
| | - Alex Justice Frimpong
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China; Department of Automotive and Agricultural Mechanization Engineering, Kumasi Technical University, Kumasi, Ghana
| | - Jingning Tang
- National Special Purpose Vehicle Product Quality Inspection and Testing Center, Suizhou City, Hubei Province, China
| | - Isaac Oyeyemi Olayode
- Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, P. O. Box 2028, Johannesburg, South Africa
| | - Sampson Kofi Kyei
- Department of Chemical Engineering, Kumasi Technical University, Kumasi, Ghana
| | - Prince Owusu-Ansah
- Department of Automotive and Agricultural Mechanization Engineering, Kumasi Technical University, Kumasi, Ghana
| | - Philip Kwabena Agyeman
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China
| | - Jamshid Valiev Fayzullayevich
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China; School of Automobile and Automotive Economy, Tashkent State Transport University, Tashkent, Uzbekistan
| | - Gangfeng Tan
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China.
| |
Collapse
|
3
|
Lin CH, Liu WS, Wan C, Wang HH. Pentraxin 3 mediates early inflammatory response and EMT process in human tubule epithelial cells induced by PM2.5. Int Immunopharmacol 2022; 112:109258. [PMID: 36179417 DOI: 10.1016/j.intimp.2022.109258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
Abstract
Pentraxin 3 (PTX3) is a multifunctional molecule that mainly expressed in response to proinflammatory stimuli under physiological and pathological conditions. It is produced in tubule epithelial cells that is involved in the innate immune response and inflammatory reactions in the kidney. However, its role in fine particulate matter (PM2.5)-induced renal injury associated with inflammation remains to be investigated. As a result of PM2.5 exposure, the levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α levels were increased in HK-2 cells. Notably, the mesenchymal phenotypes with migratory abilities of HK-2 cells were found following PM2.5 exposure. The elevated expressions of PTX3 mRNA and protein in response to PM2.5 were tested by RT-PCR and Western blotting respectively. Further determinate the role of PTX3 by siRNA showed lack of PTX3 could increase IL-6 production and promote epithelial-mesenchymal transition (EMT) process, as evidenced by decreased expressions of E-cadherin, and increased expressions of N-cadherin and α-SMA in HK-2 cells following PM2.5 exposure. Our study indicates that PTX3 mediates early inflammatory response and EMT in PM2.5-exposed HK-2 cells, suggesting a counter-regulatory role of PTX3 in the early course of tubule cell injury induced by PM2.5.
Collapse
Affiliation(s)
- Chien-Hung Lin
- Division of Pediatric Immunology and Nephrology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; College of Science and Engineering, Fu Jen Catholic University, New Taipei, Taiwan.
| | - Wen-Sheng Liu
- College of Science and Engineering, Fu Jen Catholic University, New Taipei, Taiwan; Department of Pediatrics, Taipei City Hospital, Zhongxing Branch, Taiwan
| | - Chuan Wan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Pediatrics, Taipei City Hospital, Zhongxing Branch, Taiwan
| | - Hsin-Hui Wang
- Division of Pediatric Immunology and Nephrology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
4
|
Oxidative Stress, Cytotoxic and Inflammatory Effects of Urban Ultrafine Road-Deposited Dust from the UK and Mexico in Human Epithelial Lung (Calu-3) Cells. Antioxidants (Basel) 2022; 11:antiox11091814. [PMID: 36139888 PMCID: PMC9495992 DOI: 10.3390/antiox11091814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/18/2022] Open
Abstract
Road-deposited dust (RD) is a pervasive form of particulate pollution identified (typically via epidemiological or mathematical modelling) as hazardous to human health. Finer RD particle sizes, the most abundant (by number, not mass), may pose greater risk as they can access all major organs. Here, the first in vitro exposure of human lung epithelial (Calu-3) cells to 0−300 µg/mL of the ultrafine (<220 nm) fraction of road dust (UF-RDPs) from three contrasting cities (Lancaster and Birmingham, UK, and Mexico City, Mexico) resulted in differential oxidative, cytotoxic, and inflammatory responses. Except for Cd, Na, and Pb, analysed metals were most abundant in Mexico City UF-RDPs, which were most cytotoxic. Birmingham UF-RDPs provoked greatest ROS release (only at 300 µg/mL) and greatest increase in pro-inflammatory cytokine release. Lancaster UF-RDPs increased cell viability. All three UF-RDP samples stimulated ROS production and pro-inflammatory cytokine release. Mass-based PM limits seem inappropriate given the location-specific PM compositions and health impacts evidenced here. A combination of new, biologically relevant metrics and localised regulations appears critical to mitigating the global pandemic of health impacts of particulate air pollution and road-deposited dust.
Collapse
|
5
|
Lo CC, Liu WT, Lu YH, Wu D, Wu CD, Chen TC, Fang YT, Lo YC, Chen YY, Kang L, Tsai CY, Lee YL, Chuang KJ, Ho KF, Chang TY, Chuang HC. Air pollution associated with cognitive decline by the mediating effects of sleep cycle disruption and changes in brain structure in adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52355-52366. [PMID: 35258725 DOI: 10.1007/s11356-022-19482-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The effects of air pollution on sleep and dementia remain unclear. The objective of this study was to investigate the effects of air pollution on cognitive function as mediated by the sleep cycle. A cross-sectional study design was conducted to recruit 4866 subjects on which PSG had been performed. Fifty of them were further given a cognitive function evaluation by the MMSE and CASI as well as brain images by CT and MRI. Associations of 1-year air pollution parameters with sleep parameters, cognitive function, and brain structure were examined. We observed that O3 was associated with a decrease in arousal, an increase in the N1 stage, and a decrease in the N2 stage of sleep. NO2 was associated with an increase in the N1 stage, a decrease in the N2 stage, and an increase in REM. PM2.5 was associated with a decrease in the N1 stage, increases in the N2 and N3 stages, and a decrease in REM. The N1 and N2 stages were associated with cognitive decline, but REM was associated with an increase in cognitive function. The N1 stage was a mediator of the effects of PM2.5 on the concentration domain of the MMSE. O3 was associated with an increase in the pars orbitalis volume of the left brain. NO2 was associated with increases in the rostral middle frontal volume, supramarginal gyrus volume, and transverse temporal volume of the left brain, and the pars opercularis volume of the right brain. PM2.5 was associated with increases in the pars triangularis volume of the left brain and the fusiform thickness of the right brain. In conclusion, we observed that air pollution was associated with cognitive decline by mediating effects on the sleep cycle with changes in the brain structure in controlling executive, learning, and language functions in adults.
Collapse
Affiliation(s)
- Chen-Chen Lo
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
- Sleep Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wen-Te Liu
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
- Sleep Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yueh-Hsun Lu
- Department of Radiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Dean Wu
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ting-Chieh Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Ting Fang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Industrial Ph.D. Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Lo Kang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
- Sleep Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Cheng-Yu Tsai
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kin-Fai Ho
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Ta-Yuan Chang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
6
|
Sun J, Ho SSH, Niu X, Xu H, Qu L, Shen Z, Cao J, Chuang HC, Ho KF. Explorations of tire and road wear microplastics in road dust PM 2.5 at eight megacities in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153717. [PMID: 35149066 DOI: 10.1016/j.scitotenv.2022.153717] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/05/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Tire and road wear microplastics (TRWMPs) in road dust are a key source of atmospheric particulate matter and have an adverse impact on human health and the environment. In this study, samples of particulate matter with a diameter of 2.5 μm or less (PM2.5) in road dust were collected from eight megacities in China to determine the TRWMP content, including that of natural rubber (NR), styrene-butadiene rubber (SBR), and butadiene rubber (BR). The total abundance of TRWMPs was the highest in Lanzhou (174.7 ± 17.0 μg g-1), followed by Xi'an (169.3 ± 23.8 μg g-1), Beijing (107.5 ± 7.5 μg g-1), Changchun (102.2 ± 8.4 μg g-1), Chengdu (101.6 ± 12.9 μg g-1), Guangzhou (98.8 ± 6.5 μg g-1), Wuhan (96.0 ± 5.3 μg g-1), and Shanghai (86.1 ± 30.1 μg g-1). A considerably higher TRWMP fraction in road dust PM2.5 was observed in the northern cities than in the southern cities and is attributable to the higher frictional resistance of roads subjected to less precipitation. The abundance of TRWMPs in the southern cities was dependent on road type, but this dependence was not observed in the northern cities. In the south, road dust PM2.5 on main roads contained more TRWMPs than that on branch roads. Correlation analysis indicated that TRWMPs were associated with tire, road, and break wear. In relation to intracellular oxidative stress factors, higher correlations were observed between TRWMPs and lactate dehydrogenase (r = 0.83) than between TRWMPs and reactive oxygen species (r = 0.59), possibly because TRWMPs destroy the integrity of the cell membrane, with NR exhibiting a higher cytotoxicity than SBR or BR. This study provides evidence that TRWMPs have an adverse impact on human health by inducing cellular oxidative stress. Therefore, further research on TRWMPs in respirable road dust is required.
Collapse
Affiliation(s)
- Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, NV 89512, United States
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Linli Qu
- Hong Kong Premium Services and Research Laboratory, Kowloon, Hong Kong, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Zinc Oxide Nanoparticles Promote YAP/TAZ Nuclear Localization in Alveolar Epithelial Type II Cells. ATMOSPHERE 2022. [DOI: 10.3390/atmos13020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated roles of Hippo signaling pathway components in alveolar type II cells (AECII) after zinc oxide nanoparticle (ZnONP) exposure. ZnONPs physicochemistry was characterized using field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray (EDX) microanalysis. ZnONP deposition in human respiratory tract was estimated using multiple-path particle dosimetry (MPPD) model. MLE-12 AECII were cultured and exposed to 0, 1, and 5 μg/mL of ZnONPs for 24 h. Western blots were used to investigate signaling pathways associated with Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ), cell adherens junctions, differentiation, and senescence. ZnONPs morphology was irregular, with Zn and O identified. Approximately 72% of inhaled ZnONPs were deposited in lungs, with 26% being deposited in alveolar regions. ZnONP exposure increased nuclear YAP expression and decreased cytoplasmic YAP expression by AECII. Adherens junction proteins, E-cadherin, α-catenin, and β-catenin, on AECII decreased after ZnONP exposure. ZnONP exposure of AECII increased alveolar type I (AECI) transition protein, LGALS3, and the AECI protein, T1α, while decreasing AECII SPC expression. ZnONP exposure induced Sirt1 and p53 senescence proteins by AECII. Our findings showed that inhalable ZnONPs can deposit in alveoli, which promotes YAP nuclear localization in AECII, resulting in decrease tight junctions, cell differentiation, and cell senescence.
Collapse
|